Universiti Malaysia BEE1213-Digital Electronics

Tutorial 1

Chapter 2: Numbering System

Final Exam 2010/2011 (Sem1)

1. The following bytes represent a person's name as it would be stored in a computer's memory. Each byte contains padded ASCII code. Determine the name of the person.

1000001100110110001011010011
[6 Marks]
Final Exam 2011/2012 (Sem1)
2. The number 368 is given. Convert the number into binary number, decimal number and hexadecimal number. What is 2 's compliment for this number?
[4 Marks]
3. Calculate each of the signed numbers
(i) $01111101+00111010$
(ii) $11100111-00001110$

Final Exam 2011/2012 (Sem2)
4. Solve the following;
(i) Express 353_{8} in hexadecimal
(ii) Determine -144-(-35)
(iii)Determine 110011/110
(iv) Convert the binary number 11100101 to Gray code
(v) Convert the Gray code 10110101 to binary
[11 Marks]
Test 1 2011/2012 (Sem1)
5. (a) Convert the decimal fraction 0.9028 to binary using repeated multiplication by 2 (give your answer in 4 significant digits). $\left(A=0.1110011_{2}\right)$
[2 marks]
(b) Demonstrate how many bits are required to represent the decimal numbers in the range from 0 to 999 using:
(i) Straight binary code? $(\mathrm{A}=10 \mathrm{bits})$
(ii) Using BCD codes? (A=12bits)
(c) Solve subtraction in the 2's complement form for 00110011-00010000. ($\mathrm{A}=400100011$)
6. (a) List 2 (TWO) differences between analog and digital system.
[4 marks]
(b) Determine the hexadecimal number from decimal number 750 by repeated division. $\left(\mathrm{A}=2 E E_{16}\right)$
[2 marks]
(c) Perform addition operation in the 2's complement form for 15 and -7 (represent the decimal number in 8 -bit binary number). ($A=400001000 \quad \rightarrow+8$)

