

Faculty of Electrical & Electronics Engineering DEE3143 Basic Electrical Machine & Power Systems

ASSIGNMENT #2

1) A transmission line system consists of a generator, a step up transformer, transmission line, a step down transformer and a load. The following components apply to each component. Build the per unit impedance diagram for the power system. Use the base values at generator side:

Line : $4 + j12 \Omega$

SDT : 125 MVA 132/11 kV $X_{SDT} = 11.2\%$

Load : 125 MW at unity PF and 11 kV

2) The one-line diagram of a three-phase power system is shown in Figure 1. The manufacturer's data for each device is given as follow:

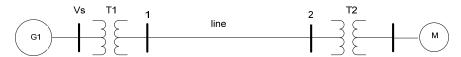


Figure 1

Develop the impedance equivalent diagram for the power system. Mark impedance in per-unit. Select a common base of 50 MVA and 20kV as the voltage base for generator.

3. A 100 MVA, 33 kV, three-phase generator is connected to the motor through a transmission line as shown in Figure 2 below.

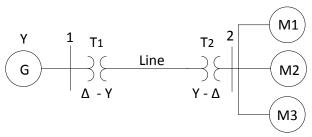
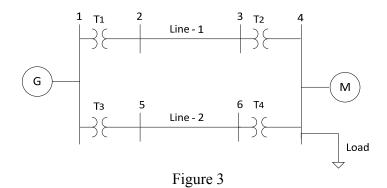


Figure 2

The generator, transmission line and transformers are rated as follows:

G	:	100 MVA	33 kV	X=15%		
Three-phase Δ -Y transformer:						
T_1	:	110 MVA	$32\Delta/110Y \text{ kV}$	X=8%		
Three-phase Y- Δ transformer:						
T_2	:	110 MVA	$110Y/32\Delta kV$	X=8%		
Three-phase motor:						
M_1	:	40 MVA	30 kV	X=20%		
M_2	:	30 MVA	30 kV	X=20%		
M_3	:	20 MVA	30 kV	X=20%		
M_2	:	30 MVA	30 kV	X=20%		


Line : $X=60 \Omega$

Build the per-unit equivalent circuit diagram of the system as shown in Figure 2. Choose the base values in the circuit of generator.

4) Figure 5 shows the schematic diagram of a three phase power system. The network data are given below:

G:	140 MVA	22 kV	$X_G = 0.28 \text{ pu}$
T1:	60 MVA	22/220 kV	$X_{T1} = 0.12 \text{ pu}$
T2:	60 MVA	220/11kV	$X_{T2} = 0.09 \text{ pu}$
T3:	80 MVA	22/110kV	$X_{T3} = 0.128 \text{ pu}$
T4:	60 MVA	110/11kV	$X_{T4} = 0.12 \text{ pu}$
Motor:	60 MVA	10.45kV	$X_{Load-1} = 0.167 \text{ pu}$

 $X_{line1} = 66.62 \Omega$ $X_{line2} = 88.41 \Omega$

The Load is 55 MVA and it operates at 10.45 kV, 0.75 power factor lagging. By selecting a common base of 100 MVA, and 22kV at generator side, draw the impedance diagram showing all impedances in per unit.

5. The one-line diagram of a three-phase power system is shown in Figure 4. Draw the impedance equivalent circuit for the power system. Mark all impedance in per-unit. Select a common base of 50 MVA and 20 kV at bus 1 near the generator G1.

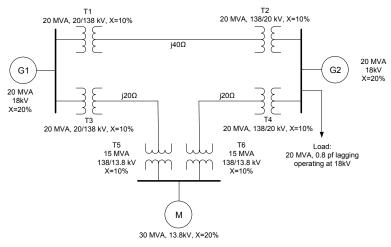


Figure 4