Authors: Mohd Ikhwan Muhammad Ridzuan, Norinon Mohamed, Mohd Redzuan Ahmad, Ruhaizad Ishak, Norhafidzah Mohd Saad, Amir Izzani Mohamed

Faculty of Electrical & Electronics Engineering BEE3133 Electrical Power Systems

ASSIGNMENT #1

- 1. Describe the advantages and disadvantages of radial and ring network in electrical power distribution system.
- 2. Describe the functions of substation in electrical power system.
- 3. Define the following terms:
 - o Maximum Demand
 - Load factor
 - Plant capacity factor
 - Plant use Factor
 - Utilization factor
 - Diversity factor
- 4. A power station has to supply load as below:

Time in hours	0-6	6-12	12-16	16-18	18-20	20-24
Load in MW	40	100	120	100	90	80

The power station will shut down 25 days per year for maintenance. Assuming 80% of the plant capacity is the maximum demand, analyze:

- The daily energy production
- The annual energy production
- o Daily load factors
- o Annual load factor
- The reserve capacity of the plant
- The plant capacity factor
- o The plant use factor

[Ans: 2020MWh, 686800MWh, 0.7014, 0.653, 30MW, 0.5, 0.56]

5. A power station has to supply load as follow

Duration (hours)	Load (MW)	
12am – 2am	40	
2am – 6am	30	
6am – 10am	90	
10am-12am	100	
12pm – 2pm	120	
2pm –6pm	100	
6pm – 8pm	90	
8pm – 10pm	70	
10pm – 12am	50	

- o Plot the load curve.
- o Calculate the daily load factor

[Ans: 0.632]

- 6. A power plant delivers 100 MW from 6 am to 2 pm and 150 MW from 8 pm to 12 am. The power plant will shut down for maintenance in some duration of each year. The energy generated per year is 335.5×10^3 MWh. Assuming the 80% of the plant capacity is the maximum demand, analyze:
 - Daily energy production
 - The actual day of the power plant is operated and the day of power plant is shut down for a year.
 - The average load
 - The annual load factor.
 - The capacity of the power plant.
 - The reserve capacity of the power plant.
 - The plant use factor.

[Ans: 1400MWh, 240, 125, 38.3MW, 0.2553, 187.5MW, 37.5MW, 0.31]

- 7. Maximum demand of a generating plant located at Pasir Gudang is 150MW with 55% daily load factor. The plant capacity factor and plant use factor is 55% and 85% respectively. Analyze
 - o daily energy produced
 - installed capacity of the plant
 - o reserve capacity of the plant
 - maximum energy that could be produced daily if the plant running all the time

o [Ans: 1980MWh, 150MW, 0, 3600MWh]

Authors: Mohd Ikhwan Muhammad Ridzuan, Norinon Mohamed, Mohd Redzuan Ahmad, Ruhaizad Ishak, Norhafidzah Mohd Saad, Amir Izzani Mohamed

8. The daily load data of a substation is given below. Assume the maximum demand to be 80% of the plant capacity.

Duration (hours)	Load (kW)	
12am – 2am	900	
2am – 6am	800	
6am – 9am	3000	
9am –12pm	5000	
12pm – 2pm	2000	
2pm – 4pm	4000	
4pm – 6pm	3500	
6рт – 8рт	2500	
8pm – 10pm	1500	
10pm – 11pm	1000	
11pm – 12am	700	

Based on the given data,

- Plot the load curve.
- Calculate the load factor
- Calculate the reserve capacity of the plant
- o Plant use factor
- 9. A power station has the following annual load. Calculate total annual energy consumption.

	Industrial
Load factor	0.82
Maximum demand	6000kW

[Ans: 43 x 10³ MWh]

10. A medium voltage industrial plant having the following data from its monthly bill:

Load Factor	: 60%
Monthly active energy consumption (kWh)	: 216,000 units
Monthly reactive energy consumption (kVarh)	: 220,363 units

Using Tariff E1 - Medium Voltage General Industrial Tariff (TNB), analyze:

- (i) The maximum demand of the consumer.
- (ii) The power factor of the consumer (assume 30 days per month).
- (iii)The total penalty charge due to poor power factor (if any) and the total monthly bill charge for this consumer.
- (iv)The size of capacitor, in Kvar, would raise the PF to be 0.85.

Tariff E1 – Medium Voltage General Industrial Tariff

For each kilowatt of maximum demand per month RM/kW 29.60

For all kWh sen/kWh 33.7

TNB Power factor surcharge

Percent of surcharge from the current bill	Condition
1.5%	For every 0.01 less than 0.85 power factor
3.0%	For every 0.01 less than 0.75 power factor

[Ans:500kW, 0.7, RM26,277.60, RM113,869.60, 120.14kVar]