

Faculty of Electrical & Electronics Engineering DEE3133 Basic Electrical Machine & Power System

Name:	ID:
Section:	Date:
(Failed to complete all the particulars above will be penalized 2 marks)	
QUIZ 3	
A 415 V series dc motor has nome	inal armature current of 15 A. The armature and field
resistances are 0.9 Ω and 1.5 Ω re	spectively. Stray losses are assumed constant at 250 W
throughout the operation of the m	otor. Determine:
i. The back-emf/counter-emf, E_a	
ii. The mechanical power develop	bed by the motor, P_m
iii. The output power, P_o	
iv. Percentage of efficiency of the	machine [10MARKS]
Equations: $V_T = E_a + I_a (R_a + R_f)$	
$P_m = E_a I_a$	
$P_o = P_m - P_\mu$	
$\%\eta = \frac{P_o}{P_{in}} \times 100\%$	

Answer:

 $P_{in} = V_{in} \times I_a$