

DEE 3143 BASIC ELECTRICAL MACHINE & POWER SYSTEMS

CHAPTER 4 POWER SYSTEM OVERVIEW

by

Mohd Ikhwan Muhammad Ridzuan, Norainon Mohamed, Mohd Redzuan Ahmad, Ruhaizad Ishak, Norhafidzah Mohd Saad, Amir Izzani Mohamed

Faculty of Electrical and Electronic correspond author: ikhwanr@ump.edu.my

Load

- Types of load/customer:
 - Residential
 - Commercial
 - Industrial
 - Public Transportation
 - Public Lighting
 - -etc.

Residential Load

- Mainly consist of fan, lighting, air condition, television, refrigerator, kitchen appliances, washing machine and etc.
- These load increase during evening to midnight and morning (normal routine of human at home before/after working hours)

Commercial Load

- Consists of fan, lighting, air-condition and small appliances.
- Shops, offices, business premises, schools, universities etc.
- The load is fairly constant from 9am until 9pm (during working hours) with the exception of any mid-day break.

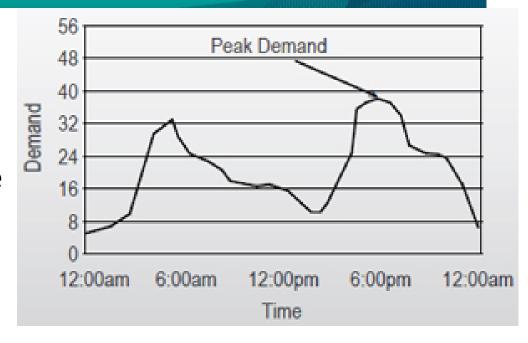
Industrial Load

- Mainly consists of motor load, air conditioner, lighting, welding and furnaces etc.
- It can be divided into small, medium and large category. The nature of industrial load curve will depend on the number of shifts worked in the industry.

Electricity consumers according to sectors

Types of sectors	Quantity	Percent (%)
Domestic	5,627,999	83.4
Commercial	1,045,971	15.5
Industrial	26,993	0.4
Public lighting	47,237	0.7
Mining	6748	0.1
TOTAL	6,748, 200	100%

kWh consumption according to sectors

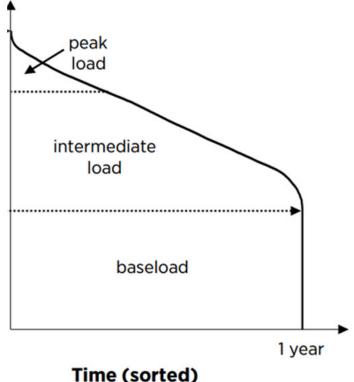

Types of sectors	Capacity	Percent (%)
Domestic	14.2 x 10 ⁹ kWh	18.9
Commercial	22.1 x 10 ⁹ kWh	29.4
Industrial	38.1 x 10 ⁹ kWh	50.6
Public lighting	$0.75 \times 10^9 \text{ kWh}$	1.0
Mining	$0.08 \times 10^9 \text{ kWh}$	0.1
TOTAL	75.2 x 10 ⁹ kWh	100%

Load Curve

- The load on power system is not constant. It is varies time to time.
- The load curve can be obtained by plotting the load against time.
- Plotted from 24 hours a day daily load curve.
- If the time considered for one year (8760 hours) annual load curve.
- Yearly load curve used to determine load factor
- Area under load/curve energy generated in the period consideration.

Load Curve

- area under the curve divided by the total number of hours gives the average load on the power station.
- The peak curve load indicated by the load curve represents the maximum demand on the power station.



Source: http://energysentry.com/newsletters/high-electric-bills.php

Load Curve

- The greatest problem for a power supply company is varying load. The generation should be matched with the load consistently.
 - The base load power is suppli by power plants running continuously.
 - The Intermediated/Average load prevails for some part of the day.
 - The peak load prevails only a few hours of the day

Load duration curve

Source: https://www.researchgate.net/figure/ 313159889 fig14 Figure-17-Load-duration-curve

Terms and Definitions

- Demand
 - Load at specific point/terminal in specific time/duration.

- Demand interval (Δt)
 - The period which the load/demand is averaged.
 - Selected ∆t period maybe 15min, 30min, 1 hour, or even longer.

Terms and Definitions

- Maximum Demand
 - The highest load during the specified period of time.

Demand Factor[DF]

$$DF = \frac{\text{max} \textit{imum.demand}}{\textit{total.connected.demand}}$$

Terms and Definitions

- Diversified Demand/Coincident Demand
 - Composite demand group (residential, commercial, industrial, and miscellaneous), as a whole of somewhat unrelated loads (loss in transmission and distribution) over a specified period of time.
- Utilization Factor[F_u]

$$F_{u} = \frac{Maximum demand}{Rated system capacity}$$

Terms and Definitions

• Plant Capacity Factor

Plant capacity factor =
$$\frac{E}{C \times t}$$

Where, E = energy produced (kWh)

C = plant capacity/rating (kW)

t = total number of hours

Terms and Definitions

Plant Use Factor

Plant use factor =
$$\frac{E}{C \times t_1}$$

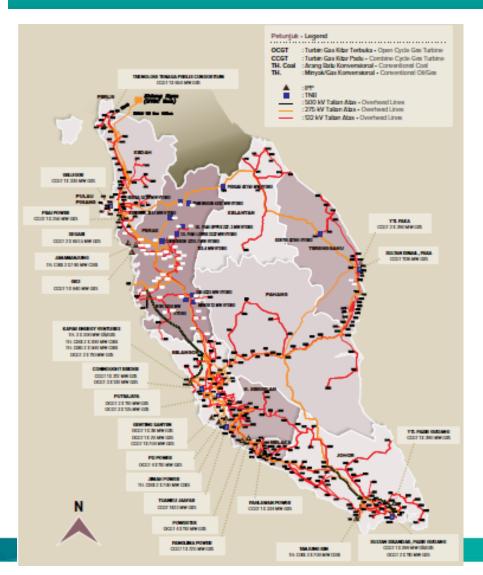
Where, E = energy produced (kWh)

C = plant capacity/rating (kW)

t₁= total number of hours

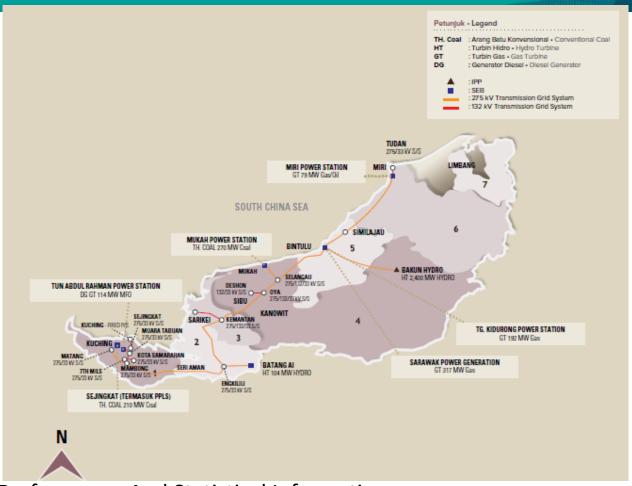
Loads Demand

- The magnitude of load varies throughout the day.
- The highest value of load during 24 hours period is called peak or maximum demand.

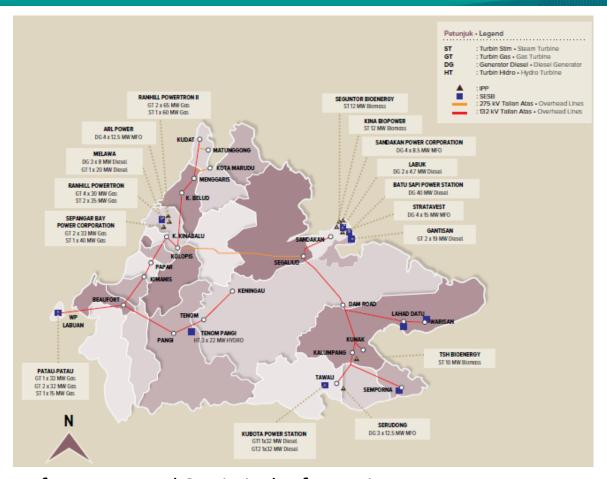

Daily
$$LF = \frac{\text{average load}}{\text{peak load}}$$

- In order to assess the usefulness of the generating plant, the load factor (LF) is defined.

Daily Load factor and annual load factor is given as,


Annual LF =
$$\frac{\text{total annual energy}}{\text{peak load x 8760 hr}}$$

Power generation station (Peninsular Malaysia)


Source: Performance And Statistical Information On Electricity Supply Industry In Malaysia, Energy Commission Malaysia, 2014

Power generation station: Sarawak

Source: Performance And Statistical Information
On Electricity Supply Industry In Malaysia, Energy Commission Malaysia, 2014

Power generation station: Sabah

Source: Performance And Statistical Information
On Electricity Supply Industry In Malaysia, Energy Commission Malaysia, 2014

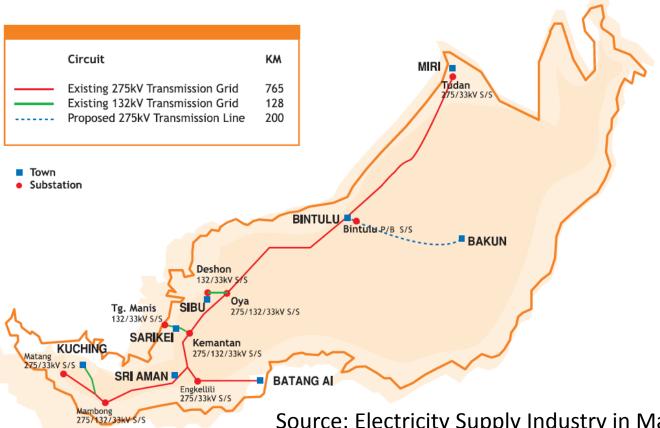
Grid system: Peninsular Malaysia



Source: Electricity Supply Industry in Malaysia Performance and Statistical Information,

Energy Commission Malaysia, 2006

Grid system: Sabah


SISTEM GRID DI SABAH GRID SYSTEM IN SABAH

Source: Electricity Supply Industry in Malaysia Performance and Statistical Information, Energy Commission Malaysia, 2006

Grid system: Sarawak

GRID SYSTEM IN SARAWAK

Source: Electricity Supply Industry in Malaysia Performance and Statistical Information, Energy Commission Malaysia, 2006

Mohd Ikhwan Muhammad Ridzuan, PhD Faculty of Electrical and Engineering Universiti Malaysia Pahang ikhwanr@ump.edu.my

Research interest: Reliability, Distribution network, smart grid, risk asessment