

DEE 3143 BASIC ELECTRICAL MACHINE & POWER SYSTEMS

CHAPTER 1 TRANSFORMER

by Mohd Ikhwan Muhammad Ridzuan, Norhafidzah Mohd Saad, Marlina Yakno

Faculty of Electrical and Electronic correspond author: ikhwanr@ump.edu.my

Power factor

Power factor = angle between voltage and current, $cos \theta$.

For real power transformer, the power factor is always lagging

Transformer Efficiency

$$\eta = \frac{P_{out}}{P_{in}} \times 100\%$$

$$= \frac{P_{out}}{P_{out} + P_{losses}} \times 100\%$$

$$= \frac{V_2 I_2 \cos \theta}{V_2 I_2 \cos \theta + P_c + P_{cu}} \times 100\%$$

$$* P_C = V_1^2 / R_C$$

$$* P_{Cu} = I_1^2 R_1 + I_2^2 R_2 = I_1^2 R_{eq,1} = I_2^2 R_{eq,2}$$

$$\eta_{(full \, load)} = \frac{VA\cos\theta}{VA\cos\theta + P_c + P_{cu}} \times 100\%$$
$$\eta_{(load \, n)} = \frac{nVA\cos\theta}{nVA\cos\theta + P_c + n^2 P_{cu}} \times 100\%$$

Where, if 1/2 loaded, hence n = 1/2, 1/3 loaded, n = 1/3, 90% of full load, n = 0.9

Communitising Technology

Voltage Regulation

• To measure voltage drop between no load and full load

$$V.R = \frac{V_{S,NL} - V_{S,FL}}{V_{S,NL}} \times 100\%$$

$$V.R = \frac{V_P - aV_S}{aV_S} \times 100\%$$

$$V.R = \frac{V_P / a - V_{S,FL}}{V_{S,FL}} \times 100\%$$

Measurement for Transformer

- Two type of tests
- The tests are conducted to determine the parameters of the transformer.
 - Open circuit test
 - Short circuit test

Open Circuit Test For Transformer

- Open circuit test is conducted to determine magnetism parameters, R_c and X_m
- Measurements are at high voltage side transformer's secondary winding is open-circuited.

Open Circuit Test

From a given test parameters

Magnitude of the excitation admittan ce branch:

$$Y_{OC} \Big| = \frac{I_{OC}}{V_{OC}}$$

The angle of admi tan *ce* :

$$PF = \cos \theta_{OC} = \frac{P_{OC}}{V_{OC}I_{OC}}$$

PF angle:

$$\Theta_{OC} = \cos^{-1} \left(\frac{P_{OC}}{V_{OC} I_{OC}} \right)$$

PF always lagging for the real transformer :

$$\begin{aligned} X_{OC} &= \frac{I_{OC}}{V_{OC}} \angle -\theta \\ &= \frac{I_{OC}}{V_{OC}} \angle -\cos^{-1} PF \end{aligned}$$

Thus the complex admi tan ce can be expressed as,

$$|Y_{OC}| = |Y_{OC}| \angle -\theta = G_C - jB_M = \frac{1}{R_C} - j\frac{1}{X_M}$$

Short Circuit Test For Transformer

- The short circuit test is for determine the copper parameters based on which side it test. If the test is at primary, hence the parameters are R_{01} and X_{01} and vice-versa.
- If the given test parameters are taken on primary side, R_{01} and X_{01} will be obtained. Or else, vice-versa.

Source: https://commons.wikimedia.org/wiki/File:Short_Circuit_test.jpg

Communitising Technology

Short Circuit Test

From a given test parameters

For a case referred to Primary side

The magnitude of the series impedance

$$|Z_{SE}| = \frac{V_{SC}}{I_{SC}}$$
The power factor of the current :

$$PF = \cos \theta = \left(\frac{P_{SC}}{V_{SC}I_{SC}}\right)$$
The current angle :

$$\theta = \cos^{-1}\left(\frac{P_{SC}}{V_{SC}I_{SC}}\right)$$
Therefore ,

$$|Z_{SE}| = \frac{V_{SC} \ge 0^{\circ}}{I_{SC} \ge -\theta^{\circ}} = \frac{V_{SC}}{I_{SC}} \ge 0^{\circ}$$
The series impedance :

$$Z_{SE} = R_{eq} + jX_{eq}$$

$$= \left(R_{P} + a^{2}R_{S}\right) + j\left(X_{P} + a^{2}X_{S}\right)$$

1.3 THREE-PHASE TRANSFORMER

Introduction

- Most of utility company use 3phase systems for generation, transmission and distribution
- The main advantages:
 - It occupies less floor space for equal rating.
 - Weighs less.
 - Costs about 15% less, and further.

Three-phase transformer bank

Source: https://commons.wikimedia.org/wiki/File:37.5kVA_three_phase_utility_stepdown.jpg

Construction

• The transformer can be constructed in two form:

3-phase of independent identical transformers

Single transformer wound with single 3-legged core

Source: http://machineryequipmentonline.com/electric-equipment/ transformersthree-phase-transformers/

Connection Technique

• Two possible connection technique are:

Communitising Technology

Delta Winding Connection

• Each windings are constructed by connecting each end of a winding to a different winding.

Voltage across a delta winding = line voltage Current in a delta winding = $\frac{Line\ current}{\sqrt{3}}$

Source: http://www.electronics-tutorials.ws/transformer/ three-phase-transformer.html

Star Winding Connection

• Star connected windings are constructed by connecting one end of each winding together.

Voltage across a delta winding = $\frac{Line \ voltage}{\sqrt{3}}$ Current in a delta winding = line current

Source: http://www.electronics-tutorials.ws/transformer/ three-phase-transformer.html

Connection Type

Four possible connections for three phase transformer:

Star-star (Y-Y) Connection

Source: https://electricalnotes.wordpress.com/2012/04/30/star-star-connection-of-transformer/

- \times V_{ØS} = secondary-phase voltage
- \times V_{LP} = primary-line voltage
- \bullet V_{LS} = secondary-line voltage

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\phi P}}{\sqrt{3}V_{\phi S}} = a$$

Star-star (Y-Y) Connection

Advantages	Disadvantages

- Economic: less number of turns and quantity of insulation.
- The windings able to handle heavy loads and short circuit.

- Unbalanced voltage.
- The presence of third harmonic voltage.

Star-delta (Y-Δ) Connection

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\phi P}}{V_{\phi S}} = \sqrt{3}a$$

Communitising Techndlogy

Star-delta (Y- Δ) Connection

Advantages	Disadvantages
Economic: less	• The secondary
number of turns and	voltage is shifted 30°
quantity of	from the primary

one.

- quantity of insulation.
- No third harmonic voltage problem.
- Stable with respect to unbalanced load.

Communitising Technology

Delta-delta (Δ – Δ) CONNECTION

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\phi P}}{V_{\phi S}} = a$$

Communitising Technology

Delta-delta (Δ – Δ) CONNECTION

Advantages	Disadvantages

- Economic: crosssection of the winding is low.
- No third harmonic voltage problem.
- Stable with respect to unbalanced load.
- It is not possible for 3-phase four wire system because neutral point is absent.

Delta-star (Δ –y) Connection

Fig. 9. Open Phase in a Y_g - Δ Transformer

Source: http://generalpac.com/transformers/open-phase-condition-in-transformers

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\phi P}}{\sqrt{3}V_{\phi S}} = \frac{\sqrt{3}}{a}$$

Delta-star (Δ –y) Connection

Advantages	Disadvantages
• No third harmonic	• The secondary
voltage problem.	voltage is shifted 30°

- Stable with respect to unbalanced load.
- The secondary voltage is shifted 30° from the primary one.

Applications

CONNECTION TYPES	APPLICATIONS
STAR-STAR	Most economical for small high voltage transformers
STAR-DELTA	Commonly used in a step-down transformer (i.e. employed at the substation)
DELTA-DELTA	Suitable for large, low voltage transformers
DELTA-STAR	Commonly used in a step-up transformer (i.e. at the beginning of a HT transmission line)

Mohd Ikhwan Muhammad Ridzuan, PhD Faculty of Electrical and Engineering Universiti Malaysia Pahang ikhwanr@ump.edu.my

Research interest: Reliability, Distribution network, smart grid, risk asessment