For updated version, please click on http://ocw.ump.edu.my

Organic Chemistry

Benzene and Aromatic compounds (2)

by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

Benzene and Aromatic compounds By Seema Zareen <u>http://ocw.ump.edu.my/course/view.php?id=152</u>

Expected Outcomes

In the completion of this chapter, student will have the ability to:

Compare and identify aromatic, antiaromatic and nonaromatic compounds

Contents

- Benzene structure
- Nomenclature
- Huckel's rule

Electrophilic Aromatic Substitution

Background

- Benzene does not undergo addition reactions like other unsaturated hydrocarbons, because addition would yield a product that is not aromatic.
- Substitution of a hydrogen keeps the aromatic ring intact.
- There are five main examples of electrophilic aromatic substitution.

Reactions of Aromatic Compounds: Electrophilic Substitution

The most common reaction of aromatic compounds is **electrophilic aromatic substitution**, a process in which an electrophile (E⁺) reacts with an aromatic ring and substitutes for one of the hydrogens:

Electrophilic Aromatic substitution

Communitising Technology

General Mechanism of Electrophilc Substitution Reaction

1- Addition of the electophile ($\stackrel{\textcircled{\mbox{\rm E}}}{E}$) to form a carbocation

2- Loss of a proton to re-form the aromatic ring

General Mechanism of Electrophilc Substitution Reaction

1- Addition of the elcrtophile (E) to form a carbocation

2- Loss of a proton to re-form the aromatic ring

Halogenation of Benzene

- Benzene's π electrons participate as a Lewis base in reactions with Lewis acids
 - Lewis acid: electron pair acceptor
 - Lewis base: electron pair donor
- The product is formed by loss of a proton, which is replaced by a halogen

Bromination Reaction

A base removes H⁺ from the carbocation intermediate, and the neutral substitution product forms as two electrons from the C–H bond move to re-form the aromatic ring.

Chlorination Reaction

Iodination Reaction

Electrophilic Aromatic Substitution

Nitration and Sulfonation

- Nitration and sulfonation introduce two different functional groups into the aromatic ring.
- Nitration is especially useful because the nitro group can be reduced to an $\rm NH_2$ group.

Aromatic Nitration

Aromatic rings can be nitrated by reaction with a mixture of concentrated nitric and sulfuric acids. The electrophile is the nitronium ion, NO_2^+ , which is generated from HNO_3 by protonation and loss of water. The nitronium ion reacts with benzene to yield a carbocation intermediate, and loss of H⁺ from this intermediate gives the neutral substitution product, nitrobenzene.

Communitising Technology

Aromatic Sulfonation

Aromatic rings can be sulfonated in the laboratory by reaction with fuming sulfuric acid, a mixture of H_2SO_4 and SO_3 . The reactive electrophile is either HSO_3^+ or neutral SO_3 , depending on reaction conditions, and substitution occurs by the same two-step mechanism seen previously for bromination and nitration.

The mechanism of electrophilic sulfonation of an aromatic ring. An electrostatic potential map of the reactive electrophile HOSO₂⁺ shows that sulfur and hydrogen are the most positive atoms (blue). Freidel Crafts Acylation

Friedel-Crafts Alkylation

Friedel-Crafts Acylation

Mechanism of the Friedel-Crafts acylation reaction. The electrophile is a resonance-stabilized acyl cation, whose electrostatic potential map indicates that carbon is the most positive atom (blue).

Orientation of Benzene

Substituent Effects in Substituted Aromatic Rings

A substituent present on an aromatic ring affects:

- the reactivity of the aromatic ring
- the orientation of the reaction

Substituents affect the reactivity of the aromatic ring

Substituents may

- <u>activate</u> the ring, make it (much) more reactive than benzene or
- <u>deactivate</u> the ring, make it (much) less reactive than benzene

Classification of Substituent Effect

Substituents can be classified as:

- ortho- and para-directing activators,
- ortho- and para-directing deactivators, and
- meta-directing deactivators

The directing effects of the groups correlate with their relativities:

- All meta-directing groups are strongly deactivating
- Most ortho- and para-directing groups are activating
- Halogens are unique being ortho- and paradirecting but weakly deactivating

 Halogens, C=O, C≡N, and NO₂ inductively *withdraw* electrons through σ bond connected to ring

(X = F, Cl, Br, I)

The groups attached to the aromatic rings are inductively electronwithdrawing because of the polarity of their bonds.

• Alkyl groups inductively *donate* electrons

Alkyl group; inductively electron-donating

Summary of Substituent Effects in Aromatic Substitution

TABLE Substituent Effects in Electrophilic Aromatic Substitution				
Substituent	Reactivity	Orientation	Inductive effect	Resonance effect
	Activating	Ortho, para	Weak; electron-donating	None
–OH, :: –NH ₂	Activating	Ortho, para	Weak; electron-withdrawing	Strong; electron-donating
$- \overrightarrow{\mathbf{H}};, - \overrightarrow{\mathbf{Cl}};, \\ - \overrightarrow{\mathbf{H}}r;, - \overrightarrow{\mathbf{L}};$	Deactivating	Ortho, para	Strong; electron-withdrawing	Weak; electron-donating
$-\stackrel{+}{N}(CH_3)_3$	Deactivating	Meta	Strong; electron-withdrawing	None
$\begin{array}{c} -\mathrm{NO}_2,-\mathrm{CN},\\ -\mathrm{CHO},-\mathrm{CO}_2\mathrm{CH}_3,\\ -\mathrm{COCH}_3,-\mathrm{CO}_2\mathrm{H} \end{array}$	Deactivating	Meta	Strong; electron-withdrawing	Strong; electron-withdrawing