For updated version, please click on http://ocw.ump.edu.my

Organic Chemistry

Alkenes (2)

by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

Alkenes By Seema Zareen http://ocw.ump.edu.my/course/view.php?id=152

Expected Outcomes

In the completion of this chapter, student will have the ability to:

- Describe characteristics and physical properties of alkene
- Draw and name alkene using IUPAC nomenclature
- Write alkene reaction mechanism

Contents

- Alkenes
- Physical properties
- Nomenclature
- Alkene reaction mechanisms

Introduction to Addition Reactions

• The characteristic reaction of alkenes is addition—the π bond is broken and two new σ bonds are formed.

- Alkenes are electron rich, with the electron density of the π bond concentrated above and below the plane of the molecule.
- Because alkenes are electron rich, simple alkenes do not react with nucleophiles or bases, reagents that are themselves electron rich. Alkenes react with electrophiles.

Introduction to Addition Reactions

• Because the carbon atoms of a double bond are both trigonal planar, the elements of X and Y can be added to them from the same side or from opposite sides.

- Syn addition takes place when both X and Y are added from the same side.
- Anti addition takes place when X and Y are added from opposite sides.

Introduction to Addition Reactions

Hydrohalogenation—Electrophilic Addition of HX

- Two bonds are broken in this reaction—the weak π bond of the alkene and the HX bond—and two new σ bonds are formed—one to H and one to X.
- Recall that the H—X bond is polarized, with a partial positive charge on H. Because the electrophilic H end of HX is attracted to the electron-rich double bond, these reactions are called electrophilic additions.

Hydrohalogenation—Electrophilic Addition of HX

To draw the products of an addition reaction:

- Locate the C C double bond.
- Identify the σ bond of the reagent that breaks—namely, the H-X bond in hydrohalogenation.
- Break the π bond of the alkene and the σ bond of the reagent, and form two new σ bonds to the C atoms of the double bond.

Hydrohalogenation—Electrophilic Addition of HX

 The mechanism of electrophilic addition consists of two successive Lewis acid-base reactions. In step 1, the alkene is the Lewis base that donates an electron pair to H—Br, the Lewis acid, while in step 2, Br⁻ is the Lewis base that donates an electron pair to the carbocation, the Lewis acid.

Electrophilic Addition of HX to an Alkene

Step [1] Addition of the electrophile (H^{*}) to the π bond

Step [2] Nucleophilic attack of Br-

- The π bond attacks the H atom of HBr, thus forming a new C-H bond while breaking the H-Br bond. Because the remaining carbon atom of the original double bond is left with only six electrons, a carbocation intermediate is formed. This step is rate-determining because two bonds are broken but only one bond is formed.
- Nucleophilic attack of Br⁻ on the carbocation forms the new C-Br bond.

Hydrohalogenation—Markovnikov's Rule

 With an unsymmetrical alkene, HX can add to the double bond to give two constitutional isomers, but only one is actually formed:

- This is a specific example of a general trend called Markovnikov's rule.
- Markovnikov's rule states that in the addition of HX to an unsymmetrical alkene, the H atom adds to the less substituted carbon atom—that is, the carbon that has the greater number of H atoms to begin with.

Markovnikov's Rule

In the ionic addition of an acid to the carbon-carbon double bond of an alkene, the hydrogen of the acid attaches itself to the carbon atom which already holds the *greater* number of hydrogens.

- -"Them that has, gets!"
- -"The richer get richer!"

(V. W. Markovnikov -- 1838 -

1904)

Hydrohalogenation—Markovnikov's Rule

- The basis of Markovnikov's rule is the formation of a carbocation in the rate-determining step of the mechanism.
- In the addition of HX to an unsymmetrical alkene, the H atom is added to the less substituted carbon to form the more stable, more substituted carbocation.

Hydrohalogenation—Reaction Stereochemistry

- Recall that trigonal planar atoms react with reagents from two directions with equal probability.
- Achiral starting materials yield achiral products.
- Sometimes new stereogenic centers are formed from hydrohalogenation:

Hydrohalogenation—Reaction Stereochemistry

- The mechanism of hydrohalogenation illustrates why two enantiomers are formed. Initial addition of H⁺ occurs from either side of the planar double bond.
- Both modes of addition generate the same achiral carbocation. Either representation of this carbocation can be used to draw the second step of the mechanism.

Communitising Technology

Hydrohalogenation—Reaction Stereochemistry

- Nucleophilic attack of Cl⁻ on the trigonal planar carbocation also occurs from two different directions, forming two products, A and B, having a new stereogenic center.
- A and B are enantiomers. Since attack from either direction occurs with equal probability, a racemic mixture of A and B is formed.

Hydrohalogenation—Summary

Summary: Electrophilic Addition of HX to Alkenes	
	Observation
Mechanism	 The mechanism involves two steps. The rate-determining step forms a carbocation. Rearrangements can occur.
Regioselectivity	 Markovnikov's rule is followed. In unsymmetrical alkenes, H bonds to the less substituted C to form the more stable carbocation.
Stereochemistry	Syn and anti addition occur.

Hydration—Electrophilic Addition of Water

Hydration is the addition of water to an alkene to form an alcohol.

Hydration—Electrophilic Addition of Water

Mechanism 10.2 Electrophilic Addition of H₂O to an Alkene—Hydration

Step [1] Addition of the electrophile (H⁺) to the π bond

Step [2] Nucleophilic attack of H₂O

 The π bond attacks H₃O⁺, thus forming a new C-H bond while breaking the H-O bond. Because the remaining carbon atom of the original double bond is left with only six electrons, a carbocation intermediate is formed. This step is rate-determining because two bonds are broken but only one bond is formed.

 Nucleophilic attack of H₂O on the carbocation forms the new C-O bond.

Step [3] Loss of a proton

 Removal of a proton with a base (H₂O) forms a neutral alcohol. Because the acid used in Step [1] is regenerated in Step [3], hydration is acid-catalyzed.

Halogenation—Addition of Halogen

• Halogenation is the addition of X_2 (X = CI or Br) to an alkene to form a vicinal dihalide.

Halogenation—Addition of Halogen

- Halogens add to π bonds because halogens are polarizable.
- The electron rich double bond induces a dipole in an approaching halogen molecule, making one halogen atom electron deficient and the other electron rich $(X^{\delta+}-X^{\delta-})$.
- The electrophilic halogen atom is then attracted to the nucleophilic double bond, making addition possible.
- Two facts demonstrate that halogenation follows a different mechanism from that of hydrohalogenation or hydration.
 - No rearrangements occur
 - Only anti addition of X₂ is observed
 - These facts suggest that carbocations are not intermediates.

Halogenation—Addition of Halogen

Addition of X₂ to an Alkene—Halogenation

Step [1] Addition of the electrophile (X⁺) to the π bond

Step [2] Nucleophilic attack of X-

- Four bonds are broken or formed in this step: the electron pair in the π bond and a lone pair on a halogen atom are used to form two new C-X bonds. The X-X bond is also cleaved heterolytically, forming X⁻. This step is rate-determining.
- The three-membered ring containing a positively charged halogen atom is called a **bridged halonium ion.** This strained three-membered ring is highly unstable, making it amenable to opening of the ring in the second step.
- Nucleophilic attack of X⁻ opens the ring of the halonium ion, forming a new C-X bond and relieving the strain in the three-membered ring.

Halogenation—Reaction Stereochemistry

- Consider the chlorination of cyclopentene to afford both enantiomers of *trans*-1,2-dichlorocyclopentane, with no cis products.
- Initial addition of the electrophile Cl⁺ from (Cl₂) occurs from either side of the planar double bond to form a bridged chloronium ion.

Halogenation—Reaction Stereochemistry

- In the second step, nucleophilic attack of Cl⁻ must occur from the backside.
- Since the nucleophile attacks from below and the leaving group departs from above, the two CI atoms in the product are oriented trans to each other.
- Backside attack occurs with equal probability at either carbon of the three-membered ring to yield a racemic mixture.

ADDITION OF BROMINE

ANTI ADDITION

Halohydrin Formation

Treatment of an alkene with a halogen X_2 and H_2O forms a halohydrin by addition of the elements of X and OH to the double bond.

Halohydrin Formation

The Mechanism of Halohydrin Formation

Step [1] Addition of the electrophile (X^{*}) to the π bond

Steps [2] and [3] Nucleophilic attack of H2O and loss of a proton

 Four bonds are broken or formed in this step: the electron pair in the π bond and a lone pair on a halogen atom are used to form two new C-X bonds in the bridged halonium ion. The X-X bond is also cleaved heterolytically, forming X⁻. This step is ratedetermining.

 Nucleophilic attack of H₂O opens the halonium ion ring, forming a new C-X bond. Subsequent loss of a proton forms the neutral halohydrin.

Even though X⁻ is formed in step [1] of the mechanism, its concentration is small compared to H_2O (often the solvent), so H_2O and not X⁻ is the nucleophile.

Halohydrin Formation

- Although the combination of Br_2 and H_2O effectively forms bromohydrins from alkenes, other reagents can also be used.
- Bromohydrins are also formed with *N*-bromosuccinimide (NBS) in aqueous DMSO $[(CH_3)_2S=O]$.
- In H_2O , NBS decomposes to form Br_2 , which then goes on to form a bromohydrin by the same reaction mechanism.

Halohydrin Formation

Because the bridged halonium ion is opened by backside attack of H_2O , addition of X and OH occurs in an anti fashion and trans products are formed.

With unsymmetrical alkenes, the preferred product has the electrophile X^+ bonded to the less substituted carbon, and the nucleophile (H₂O) bonded to the more substituted carbon.

Halohydrin Formation

Halohydrin Formation

	Summary: Conversion of Alkenes to Halohydrins
	Observation
Mechanism	 The mechanism involves three steps. The rate-determining step forms a bridged halonium ion. No rearrangements can occur.
Regioselectivity	 Markovnikov's rule is followed. X⁺ bonds to the less substituted carbon.
Stereochemistry	Anti addition occurs.

Calculating Degrees of Unsaturation

- An acyclic alkene has the general structural formula C_nH_{2n}.
- Alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
- Cycloalkanes also have the general formula C_nH_{2n} .
- Each π bond or ring removes two hydrogen atoms from a molecule, and this introduces one degree of unsaturation.
- The number of degrees of unsaturation for a given molecular formula can be calculated by comparing the actual number of H atoms in a compound to the maximum number of H atoms possible for the number of carbons present if the molecule were a straight chain alkane.
- This procedure gives the total number of rings and/or π bonds in a molecule.

