Organic Chemistry

Alkanes (2)

by
Seema Zareen \& Dr. Izan Izwan Misnon
Faculty Industrial Science \& Technology seema@ump.edu.my; iezwan@ump.edu.my

Alkanes
By Seema Zareen
http://ocw.ump.edu.my/course/view.php?id=152

Expected Outcomes

In the end of this chapter, student will have the ability to:

- Classify carbons and hydrogens in alkanes
- Draw and identify IUPAC nomenclature of alkane and cycloalkane compounds
- Describe characteristics and physical properties of alkanes

Contents

- Alkanes
- Physical properties
- Nomenclature
- Alkanes reaction mechanisms

Cycloalkanes

- Rings of carbon atoms (CH_{2} groups)
- Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
- Nonpolar, insoluble in water
- Compact shape
- Melting and boiling points similar to branched alkanes with same number of carbons

Cycloalkanes are named by using similar rules, but the prefix cycloimmediately precedes the name of the parent.

1. Find the parent cycloalkane.

Parent Carbon = cyclohexane
Substituent = 2 (methyl and ethyl)

3-ethyl-1-methylcyclohexane
1-ethyl-3-methylcyclohexane
2. Name and number the substituents. No number is needed to indicate the location of a single substituent.

tert-butylcyclopentane

For rings with more than one substituent, begin numbering at one substituent and proceed around the ring to give the second substituent the lowest number.

numbering clockwise

CH_{3} groups at C 1 and C 3
The $2^{\text {nd }}$ substituent has a lower number.
Correct: 1,3-dimethylcyclohexane
numbering counterclockwise

CH_{3} groups at C 1 and $\mathbf{C 5}$

Incorrect: 1,5-dimethylcyclohexane

With two different substituents, number the ring to assign the lower number to the substituents alphabetically.

Begin numbering at the ethyl group.

- ethyl group at C1
- methyl group at C3

$$
\text { earlier letter } \longrightarrow \text { lower number }
$$

Correct: 1-ethyl-3-methylcyclohexane

Begin numbering at the methyl group.

- methyl group at C1
- ethyl group at C3

Incorrect: 3-ethyl-1-methylcyclohexane

Note the special case of an alkane composed of both a ring and a long chain. If the number of carbons in the ring is greater than or equal to the number of carbons in the longest chain, the compound is named as a cycloalkane.

Two contrasting examples-
Naming compounds containing both a ring and a long chain of carbon atoms
more carbons in the ring
4 C's in the chain -
a butyl group

6 C 's in the ring-cyclohexane
Name as a cyclohexane with a substituent.
Answer: butylcyclohexane
more carbons in the chain

4 C 's in the ring-a cyclobutyl group
Name as a hexane with a substituent.
Answer: 1-cyclobutylhexane

Examples of cycloalkane nomenclature

ethylcyclobutane

1-sec-butyl-3-methylcyclohexane

1,2-dimethylcyclohexane

Number to give the $2^{\text {nd }} \mathrm{CH}_{3}$ group] the lower number: 1,2- not 1,6-.

1,2,4-triethylcyclopentane

[Number to give the $2^{\text {nd }} \mathrm{CH}_{3} \mathrm{CH}_{2}$ group the $]$ lower number: 1,2,4- not 1,3,4- or 1,3,5-.

Naming complex substituents:

- If the branch has a branch, number the carbons from the point of attachment.
- Name the branch of the branch using a locator number.
- Parentheses are used around the complex branch name (sub-branch name ends in -yl).

1-methyl-3-(1,2-dimethylpropyl)cyclohexane

Cis/Trans isomerism in Cycloalkanes

In contrast to C-C single bonds in alkanes, the C-C single bonds in a cycloalkane do not undergo free rotation.

Look at a model. In order to rotate about the single bond, the C-C single bond would have to break. This sigma bond is too strong to break under ordinary conditions.

> Because of this restricted rotation, cycloalkanes with two or more substituents exhibit cis/trans isomerism

- The prefixes cis and trans are used to distinguish these isomers.
- The cis isomer has two groups on the same side of the ring.
- The trans isomer has two groups on opposite sides of the ring.

trans-1,2-dimethylcyclopentane

Additional Examples of cis- and trans- Isomers

These examples are all shown as planar structures to more easily illustrate the stereochemical relationships.

Conformations and Stabilites of Cycloalkanes

Cycloalkanes possess types of strain that do not exist in noncyclic alkanes
Angle Strain - the amount of strain due to deviation from normal bond angle.

What is the normal bond angle for an sp^{3} carbon?
109.5°

Deviation 109.5-60 $=49.9^{\circ}$
Cyclopropane

Cycloalkanes, eg cyclopropane, also possesses torsional strain because of eclipsed bonds.

Planar molecule
(b) H

Cycloalkanes

Ring Strain - total strain (sum of torsional and angle strain) in a cycloalkane compared to a open, noncyclic reference compound.

- Strain is measured by determining the heats of combustion for the different cycloalkanes and expressing the values obtained, in kcal or $\mathrm{Kj} / \mathrm{mol}$, in the form of 'per - $\mathrm{CH}_{2}-$ ' (methylene) group.
- 5- and 6-membered rings are the most stable. In fact cyclohexane is considered to be free of ring strain.

$$
\begin{aligned}
& \text { Heats of Combustion } \\
& \text { Alkane }+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Cyclopropane

- Large ring strain due to angle compression
- Very reactive, weak bonds

Cyclobutane

- Angle strain.
- Torsional strain partially relieved by ring-puckering

Newman projection of one bond

Cyclopentane

- If planar, angles would be 108°, but all hydrogens would be eclipsed.
- Puckered conformer reduces torsional strain.

Newman projection showing relief of eclipsing of bonds

Cyclohexane

- Combustion data show that it is unstrained.
- Angles would be 120°, if planar.
- The chair conformer has 109.5° bond angles and all hydrogens are staggered.
- No angle strain and no torsional strain.

Chair Conformer

chair conformation

viewed along the "seat" bonds

Newman projection

Axial and Equatorial Positions (Chair Conformer)

Move this carbon down

$$
2-2
$$

\qquad
$\uparrow \mid$ Ring-flip

-The axial and equatorial positions exchange during this process

- At room temperature the cyclohexane ring rapidly flips back and forth between two equivalent chair conformations.
- What if we have an alkyl group replacing a hydrogen ?

Monosubstituted Cyclohexanes:

Methylcyclohexane has two possible chair conformations which are interconvertible through ring flipping. In one conformation the methyl group occupies an axial position and an equatorial one in the other conformation. Studies showed that the latter conformation (equatorial methyl) is more stable by $7.6 \mathrm{KJ} / \mathrm{mol}$, compared with the other conformation (axial methyl) . In the equilibrium mixture the stable conformation constitutes 95% of the mixture.

Why is the conformation in which the methyl group of methylcyclohexane in axial position, less stable than the other conformer ?
The reason is: 1,3-diaxial interactions (repulsions)

more stable by $1.7 \mathrm{kcal} / \mathrm{mol}(7.1 \mathrm{~kJ} / \mathrm{mol})$

Disubstituted Cyclohexanes

diaxial-very unfavorable

diequatorial-much more stable

Cis-Trans Isomers

Bonds that are cis, alternate axial-equatorial around the ring.

Bicyclic Alkanes

- Fused rings share two adjacent carbons.
- Bridged rings share two nonadjacent C's.
- Fused or bridged compounds containing two rings are named as 'bicyclo'. The number of carbons attached to the two junction carbons' (in every direction; in order of decreasing length) is indicated between square brackets. Note the use of dots.
- Use the name of the alkane corresponding to the total number of carbon atoms in the rings as the parent name.

bicyclo[3.1.0]hexane

bicyclo[2.2.1]heptane

bicyclo[4.2.0]octane

bicyclo[5.1.0]octane

