

Organic Chemistry

Alkanes

by
Dr. Seema Zareen & Dr. Izan Izwan Misnon
Faculty Industrial Science & Technology
seema@ump.edu.my; jezwan@ump.edu.my

Alkanes By Seema Zareen <u>http://ocw.ump.edu.my/course/view.php?id=152</u>

Expected Outcomes

In the end of this chapter, student will have the ability to:

- Classify carbons and hydrogens in alkanes
- Draw and identify IUPAC nomenclature of alkane and cycloalkane compounds
- Describe characteristics and physical properties of alkanes

Contents

- Alkanes
- Physical properties
- Nomenclature
- Alkanes reaction mechanisms

Alkanes

- Hydrocarbon chains where all the bonds between carbons are single bonds (saturated).
- Name uses the ending –ane
- Examples: Methane, Propane, Butane, Octane, 2methylpentane

IUPAC Rule for Alkane nomenclature

- 1. Find and name the longest continuous carbon chain. This is called the parent chain. (Examples: methane, propane, etc.)
- 2. Number the chain, starting at the end nearest an attached group (substituent).
- **3.** Identify and name **groups attached** to this chain. (Examples: methyl-, bromo-, etc.)
- **4.** Designate the **location of each substituent group** with the number of the carbon parent chain on which the group is attached. Place a **dash** between numbers and letters. (Example: 3-chloropentane)
- **5.** Assemble the name, listing groups in **alphabetical order**. The **prefixes** di, tri, tetra etc., used to designate several groups of the same kind, are not considered when alphabetizing. Place a **comma** between multiple numbers. (Example: 2,3-dichloropropane)

Step 1. Find the parent chain.

Where is the *longest continuous* chain of carbons?

$$CH_3$$
 CH_3 — CH — CH_3
 CH_3 — CH_2 — CH_2 — CH_2 — CH_3
 CH_3 — CH_3 — CH_3 — CH_3

Prefixes for # of Carbons

1	Meth	6	Hex
2	Eth	7	Hept
3	Prop	8	Oct
4	But	9	Non
5	Pent	10	Dec

Step 2. Number the parent chain.

 Number the parent chain so that the attached groups are on the lowest numbers

Groups on 4, 6, and 7

5-ethyl-2,3-dimethyloctane

3-ethyl-2,6-dimethylheptane

OR

5- (1`-methylethyl)-2-methylheptane

OR

5- isoprpyl-2-methylheptane

OR

OR

Step 3. Name the attached groups.

- Carbon (alkyl) groups
 - Methyl CH₃ -
 - Ethyl CH₃CH₂-
 - Propyl CH₃CH₂CH₂-
- Halogens
 - Fluoro (F-)
 - Chloro (CI-)
 - Bromo (Br-)
 - lodo (I-)

Step 4. Designate where the group is attached to the parent chain.

 Use the numbers of the parent chain from step 2 to designate the location of the attached groups to the parent chain.

Step 5. Alphabetize the groups, combine like groups, and assemble.

- The prefixes di, tri, tetra etc., used to designate several groups of the same kind
- Prefixes are not considered when alphabetizing (Example: dimethyl = m for alphabetizing)
- Parent chain goes LAST

1,1-dichloro-1,1-difluoromethane

Some Common Alkyl Groups

^{*}The red bond shows the connection to the rest of the molecule.

Draw Some Simple Alkanes

2-methylpentane

3-ethylhexane

• 2,2-dimethylbutane

• 2,3-dimethylbutane

2-methylpentane

3-ethylhexane

2,2-dimethylbutane

2,3-dimethylbutane

Structural Formulae (Formulas)

- Instead of drawing the bonds, just state how many hydrogens are attached
- NOTE: The bonds are between CARBONS in a parent chain, and not hydrogens.

Structural Formula

Lewis Structure

Alkanes

Alkane isomers

There is only one possible way that the carbons in methane (CH_4) , ethane (C_2H_6) , and propane (C_3H_8) can be arranged.

$$1 - \stackrel{\downarrow}{C} - + 4 \text{ H} - \text{ gives} \qquad H - \stackrel{H}{C} - H$$

$$\stackrel{\downarrow}{H} \qquad Methane$$

$$2 - \stackrel{\downarrow}{C} - + 6 \text{ H} - \text{ gives} \qquad H - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} - H$$

$$\stackrel{\downarrow}{H} \qquad H$$

$$Ethane$$

$$3 - \stackrel{\downarrow}{C} - + 8 \text{ H} - \text{ gives} \qquad H - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} - H$$

$$\stackrel{\downarrow}{H} \qquad H \qquad H$$

$$Propane$$

Alkanes

• However, carbons in butane (C_4H_{10}) can be arranged in two ways; four carbons in a row (linear alkane) or a branching (branched alkane). These two structures are two isomers for butane.

Exercise

Draw all possible structural isomers of C₅H₁₂

pentane

Lewis Stucture

H₃C

C

Skeletal Structure

(CH₃)₃CCH₃

Lewis Stucture

Condensed Structure

Skeletal Structure

isopentane

Condensed Structure CH₃CH(CH₃)CH₂CH₂CH₃

Lewis Stucture

Skeletal Structure

Types of Carbon Atoms

- Primary carbon (1°)
 - a carbon bonded to one other carbon
- Secondary carbon (2°)
 - a carbon bonded to two other carbons
- Tertiary carbon (3°)
 - a carbon bonded to three other carbons

H H	Each C is attached to <u>one</u> other C atom; therefore, each is a primary C.
	is a primary C.
l н н	
ннн	The middle C (C#2) is attached to two other C atoms;
	therefore, it is a <u>secondary</u> C.
H-C-C- C-H	
	(The end C's #1 & #3 are primary.)
Н Н Н	
H	The top middle C is attached to <u>three</u> other C atoms;
	therefore, it is a <u>tertiary</u> C.
H ₃ C-C-CH ₃	
	(The three end C's are all primary.)
CH ₃	
	Note that I used a condensed formula here. It doesn't
	matter. It is up to you to count the C atoms.
CH ₃	The middle C is attached to <u>four</u> other C atoms;
	therefore, it is a <u>quaternary</u> C.
H ₃ C-C-CH ₃	
	(The four end C's are all primary.)
ĊH ₃	

Name the following compounds:

1-bromo-3-ethyl-3,4-dimethylpentane

4-isopropyl-2,2,3,6-tetramethyloctane

4- (1'-methylethyl)-2,2,3,6-tetramethyloctane

Alkanes

Write the condensed structure for the following compounds:

- i. 3,3-dimethylpentane
- ii. 2-methyl-4-sec-butyloctane
- iii. 1,2-dichloro-3-methylheptane

3,3-dimethylpentane

2-methyl-4-sec-butyloctane

1,2-dichloro-3-methylheptane

Conformations of acyclic alkanes

 Conformations are different arrangements of atoms that are interconverted by rotation about single bonds.

- Names are given to two different conformations.
- In the **eclipsed conformation**, the C—H bonds on one carbon are directly aligned with the C—H bonds on the adjacent carbon.
- In the staggered conformation, the C—H bonds on one carbon bisect the H—C—H bond angle on the adjacent carbon.

- Rotating the atoms on one carbon by 60° converts an eclipsed conformation into a staggered conformation, and vice versa.
- The angle that separates a bond on one atom from a bond on an adjacent atom is called a dihedral angle. For ethane in the staggered conformation, the dihedral angle for the C—H bonds is 60°. For eclipsed ethane, it is 0°.

 End-on representations for conformations are commonly drawn using a convention called a Newman projection.

How to Draw a Newman Projection:

Step 1. Look directly down the C—C bond (end-on), and draw a circle with a dot in the center to represent the carbons of the C—C bond.

Step 2. Draw in the bonds.

Draw the bonds on the front C as three lines meeting at the center of the circle.

Draw the bonds on the back C as three lines coming out of the edge of the circle.

Step 3. Add the atoms on each bond.

Newman projections for the staggered and eclipsed conformations of ethane

staggered conformation

eclipsed conformation

- The staggered and eclipsed conformations of ethane interconvert at room temperature, but each conformer is not equally stable.
- The staggered conformations are more stable (lower in energy) than the eclipsed conformations.
- Electron-electron repulsion between bonds in the eclipsed conformation increases its energy compared with the staggered conformation, where the bonding electrons are farther apart.

- The difference in energy between staggered and eclipsed conformers is ~3 kcal/mol, with each eclipsed C—H bond contributing 1 kcal/mol. The energy difference between staggered and eclipsed conformers is called torsional energy.
- Torsional strain is an increase in energy caused by eclipsing interactions.

At any given moment, all ethane molecules do not exist in the more stable staggered conformation; rather, a higher percentage of molecules is present in the more stable staggered conformation than any other possible arrangement.

Each H,H eclipsing interaction contributes 1 kcal/mol of destabilization to the eclipsed conformation.

 Note the position of the labeled H atom after each 60° rotation. All three staggered conformations are identical (except for the position of the label), and the same is true for all three eclipsed conformations.

Physical Properties of Alkanes

- Nonpolar
- Insoluble in water.
- Lower density than water.
- Low boiling and melting points.
- Gases with 1-4 carbon atoms.
- (methane, propane, butane)
- Liquids with 5-17 carbon atoms.
 - (kerosene, diesel, and jet fuels)
- Solids with 18 or more carbon atoms.
- (wax, paraffin, Vaseline)

Physical Properties of Alkanes

Physical Properties of Alkanes

Property	Observation				
Boiling point	 Alkanes have low bp's compared to more polar compounds of comparable size. 				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	Increasing strength of intermolecular forces Increasing boiling point				
	 Bp increases as the number of carbons increases because of increased surface area. 				
	$\begin{array}{ccc} CH_3CH_2CH_2CH_3 & CH_3CH_2CH_2CH_3 & CH_3CH_2CH_2CH_2CH_3 \\ bp = 0 \ ^{\circ}C & bp = 36 \ ^{\circ}C & bp = 69 \ ^{\circ}C \end{array}$				
	Increasing surface area Increasing boiling point				
	The bp of isomers decreases with branching because of decreased surface area.				
	Increasing branching				
	$ \begin{array}{cccc} CH_3 & CH_3 \\ CH_3 - C - CH_3 & CH_3 CHCH_2 CH_3 & CH_3 CH_2 CH_2 CH_3 \\ CH_3 & bp = 30 \ ^\circ C & bp = 36 \ ^\circ C \\ bp = 10 \ ^\circ C \\ \end{array} $				
	Increasing surface area Increasing boiling point				

Property	Observation				
Melting point	Alkanes have low mp's compared to more polar compounds of comparable size.				
	$CH_3CH_2CH_3 \qquad CH_3CHO$ $VDW \qquad VDW, DD$ $mp = -190 °C \qquad mp = -121 °C$				
	Increasing strength of intermolecular forces Increasing melting point				
	Mp increases as the number of carbons increases because of increased surface area.				
	$\begin{aligned} \text{CH}_3\text{CH}_2\text{CH}_3 & \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\\ \text{mp} = -138~^\circ\text{C} & \text{mp} = -95~^\circ\text{C} \end{aligned}$				
	Increasing surface area Increasing melting point				
	Mp increases with increased symmetry.				
	$CH_3CH_2CH(CH_3)_2$ $(CH_3)_4C$ $mp = -160 ^{\circ}C$ $mp = -17 ^{\circ}C$				
	Increasing symmetry Increasing melting point				
Solubility	Alkanes are soluble in organic solvents. Alkanes are insoluble in water.				
Key: bp = boili	ng point; mp = melting point; VDW = van der Waals; DD = dipole-dipole; HB = hydrogen bonding; MW = molecular weight				

Chemical reactions of Alkanes

Low reactivity

1- Combustion:

- Alkanes react with oxygen.
- CO₂, H₂O, and energy are produced.

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + energy$$

Chemical reactions of Alkanes

2- Halogenation:

Alkanes react with Halogens.

$$CH_4 + Cl_2 \longrightarrow CH_3Cl + HCl$$
Heat or light

$$CH_3Cl+Cl_2 \longrightarrow CH_2Cl_2 + HCl$$
Heat or light

$$CH_2Cl_2 + Cl_2 \longrightarrow CHCl_3 + HCl$$
Heat or light

Chloromethane

Dichloromethane

Trichloromethane

Tetrachloromethane

Sources of Alkanes

Natural gas

- 90 to 95 percent methane.
- 5 to 10 percent ethane, and
- a mixture of other low-boiling alkanes, chiefly propane, butane, and 2-methylpropane.

Petroleum

 A thick liquid mixture of thousands of compounds, most of them hydrocarbons, formed from the decomposition of marine plants and animals.