

BIOREACTOR ENGINEERING Chapter 10 Scale-up of Bioreactor

Chew Few Ne
Faculty of Chemical & Natural Resources
Engineering
cfne@ump.edu.my

Chapter Description

- Topic Outcomes
 - Identify the difficulties in scale-up of bioreactor
 - Perform scale-up calculation.
- References
 - Doran, P.M. (2013) Bioprocess Engineering Principles. Elsevier.
 - Liu, S. (2013) Bioprocess Engineering: Kinetics, Biosystem, Sustainability and Reactor Design. Elsevier.
 - Rao, D.G. (2010) Introduction to Biochemical Engineering. McGraw Hill.

Topic Outline

- Introduction
- Criteria of Scale-up
- Scale-down

Introduction

- Various steps in bioprocessing operation:
 - Identification and isolation of the strain of the microorganism
 - Preservation of strain
 - Culturing or growing of inoculum
 - Pre-fermentation culturing
 - Fermentation process
 - Recovery and purification of the product
 - Treatment of effluent
- Which steps as above require effort for scale-up?

Introduction

- The "ideal" scale-up criterion is that parameter which has the same numerical value as the volumes of the geometrically similar bioreactors increase in size.
- 1st scale-up criterion: Geometrical Similarity

$$- H_{L1}/D_{t1} = H_{L2}/D_{t2} = \dots = H_{L3}/D_{t3}$$

Introduction

• Exercise 1

Criteria of Scale-up

- Physical conditions in a large bioreactor can never exactly duplicate those in a smaller bioreactor if geometric similarity is maintained:
 - During scale-up, if the height-to-diameter ratio remains constant, the surface-to-volume ratio decreases dramatically \rightarrow decrease the surface aeration to O_2 supply and dissolved CO_2 removal.
 - During scale-up, volume increases, the diameter and height of the bioreactor increase time spent by the bubble in reactor is more, does not contribute to mass transfer.
 - Problem in homogeneity.
- In general, two criteria to ensure similarity during scale-up:
 - Geometric similarity of the physical boundary
 - Dynamic similarity of the flow fields

Criteria of Scale-up

- The scale-up methods for aeration and agitation:
 - Constant mass transfer coefficient
 - Constant ratio of agitation power input per unit volume of fluid (P/V)
 - Constant impeller tip speed (N_iD_i)
 - Constant mixing time (pumping rate of impeller per unit) volume, (Q/V)
 - Constant Reynolds number $\left(\frac{N_i D_i^2 \rho}{\prime\prime}\right)$

 $> P\alpha N_i^3 D_i^5$ $> V\alpha D_i^3$

 $> Q\alpha N_i D_i^3$

Criteria of Scale-up

• Exercise 2

Scale-down

- Scale-down is required:
 - to provide smaller scale experimental system, hence many parameter can be tested more quickly and inexpensively
 - to estimate the system's response (e.g., growth rate, product formation, and formation of by-product) when:
 - Change in medium composition
 - Introduction of modified production strain
 - Use of different inoculum preparations
 - Use of new antiform agents
 - Corrective protocol can be suggested for use in large-scale system by simulating the response to pH or oxygen-probe failure or compressor failure.

Special thanks to

- Prof. Dr. Tey Beng Ti
- Prof. Madya Dr. Rosfarizan binti Mohamad
- Dr. Farhan binti Mohd Said

Thanks to Dr. Rozaimi bin Abu Samah for proofreading the learning contents.

