

BIOREACTOR ENGINEERING Chapter 6 Culture Kinetic Study of Modifying Continuous Fermentation

by Chew Few Ne Faculty of Chemical & Natural Resources Engineering cfne@ump.edu.my

Culture Kinetic Study of Modifying Continuous Fermentation by Chew Few Ne

Communitising Technology

Exercise 1

A cell recycle chemostat with a feed flowrate of F = 95 mL/h and culture volume of V = 900 ml is operated under steady state condition with C = 1.5 and the recycle ratio is 0.7. Glucose is the limiting substrate with feed a concentration of 9.5 g/L. The cells yield coefficient and kinetic constant are as below:

- $K_{s} = 1.0 \text{ g glucose/L}$ $m_{max} = 0.2 \text{ h}^{-1}$ $Y_{X/S} = 0.5$
- a) Determine substrate and cell concentrations in the recycle stream.
- b) Determine specific growth rate of the cells.

Culture Kinetic Study of Modifying Continuous Fermentation by Chew Few Ne

Communitising Technology

Exercise 2

Consider a multistage chemostat with the volume of the 1st reactor of 500 L (for cell production) and the 2nd reactor of 300 L (for product formation). The glucose concentration in the feed is 5 g/L and flow into the 1st reactor at 120 L/h. The cells have the following parameters:

 $\mu_{max} = 0.45 \text{ h}^{-1}$ K_s = 0.09 g/L Y_{x/s} = 0.5

By assuming steady state operation, determine the following:

- a) Glucose and cell concentrations in the effluent of the 1st reactor.
- b) Glucose and product concentrations in the effluent of the 2^{nd} reactor if no growth occurred in the 2^{nd} reactor, $q_p = 0.02 h^{-1}$, and $Y_{p/s} = 0.6$.

Culture Kinetic Study of Modifying Continuous Fermentation by Chew Few Ne