

BIOREACTOR ENGINEERING Chapter 4 Operation Considerations for Bioreactor

Chew Few Ne
Faculty of Chemical & Natural Resources
Engineering
cfne@ump.edu.my

Chapter Description

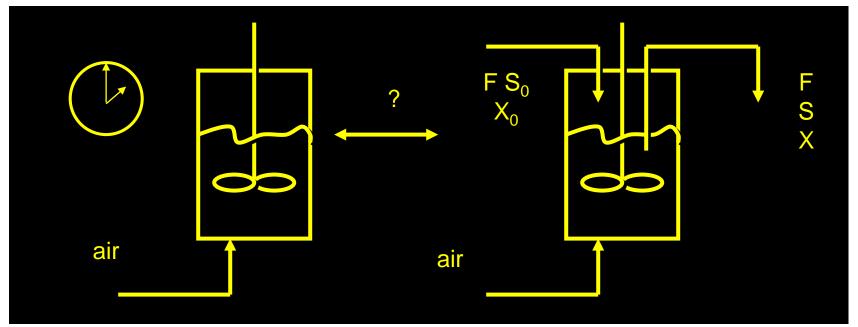
- Topic Outcome
 - Differentiate between batch and continuous modes of bioreactor operation
- References
 - Doran, P.M. (2013) Bioprocess Engineering Principles. Elsevier.
 - Liu, S. (2013) Bioprocess Engineering: Kinetics, Biosystem, Sustainability and Reactor Design. Elsevier.
 - Rao, D.G. (2010) Introduction to Biochemical Engineering. McGraw Hill.

Topic Outline

• Choosing Cultivation Method

- Batch mode
- Continuous mode

Which type is more efficient?


Which type is more common?

• Exercise 1

- PRODUCTIVITY: rate of product per time per volume.
 - Consider production of cell mass OR growth associated product in suspension culture

Batch mode

Batch cycle time is: $t_{cycle} = t_b + t_{dn}$

 t_h = the time required for batch cell conversion t_{dn} = the downtime = preparation + lag time + harvest time

- So, $t_{cycle} = \frac{1}{\mu_{\text{max}}} \ln \frac{X_f}{X_i} + t_{dn}$
- Cell production rate in one batch cycle is: $(P_X)_{batch} = \frac{X_f X_i}{t_{cools}}$

$$(P_X)_{batch} = \frac{X_f - X_i}{t_{cycle}}$$

• Recall:
$$Y_{X/S} = \frac{X_f - X_i}{S_i - S_f} = \frac{X_f - X_i}{S_i - 0}$$

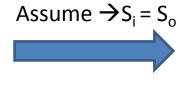
• SO,
$$(P_X)_{batch} = \frac{Y_{X/S}S_i}{\frac{1}{\mu_{\text{max}}} \ln \frac{X_f}{X_i} + t_{dn}}$$

Continuous mode

• Recall:
$$X = Y_{X/S} \left(S_0 - \frac{K_S D}{\mu_{\text{max}} - D} \right)$$
 $D_{opt} = \mu_{\text{max}} \left(1 - \sqrt{\frac{K_S}{K_S + S_0}} \right)$

$$D_{opt} = \mu_{\text{max}} \left(1 - \sqrt{\frac{K_S}{K_S + S_0}} \right)$$

- X at the maximum production rate:
- Productivity, $P_x = DX$ when $D = D_{opt}$ and X = X (at D_{opt})


• SO,
$$(P_X)_{\text{opt,cont}} = Y_{X/S} \mu_{\text{max}} \left[1 - \sqrt{\frac{K_S}{K_S + S_0}} \right] \left[S_0 + K_S - \sqrt{K_S (S_0 + K_S)} \right]$$

- when $S_0 >> K_s$
- So, $(P_X)_{opt,cont} \approx \mu_{max} Y_{X/S} S_0$

Comparing the batch production rate and continuous production rate:

$$(P_X)_{batch} = \frac{Y_{X/S}S_i}{\frac{1}{\mu_{\text{max}}} \ln \frac{X_f}{X_i} + t_{dn}}$$

$$(P_{X})_{batch} = \frac{Y_{X/S}S_{i}}{\frac{1}{\mu_{\max}}\ln\frac{X_{f}}{X_{i}} + t_{dn}}$$
Assume \Rightarrow S_i = S_o

$$\frac{(P_{X})_{opt,cont}}{(P_{X})_{batch}} = \ln\frac{X_{f}}{X_{i}} + \mu_{\max}t_{dn}$$

$$(P_X)_{opt,cont} \approx \mu_{\max} Y_{X/S} S_0$$

- In general, X_f >> X_o, thus, continuous culture is better!
- Example: *E. coli* growing on glucose:

Example: *E. coli* growing on glucose:

$$X_f/X_o = 20$$
, $\mu_{max} = 1 \text{ h}^{-1}$, $t_{dn} = 5 \text{ h}$, $\frac{(P_x)_{opt,cont}}{(P_x)_{batch}} = ?$

 Even so, most industrial fermentation processes occur in a batch reactor. Why?

Batch mode is more common because:

- Productivity → Many industrial applications are for nongrowth associated products.
- Genetic stability → Continuous culture is detrimental to genetically engineered organisms. This makes continuous culture less productive.
- Operability and sterility → Long term continuous culture can be problematic.
- Market Economics → Batch system is flexible, able to make more than one product with the same reactor.

Continuous mode is more efficient because:

- Higher productivity for cell and growth associated products because it offers a continuation of growth for a long period.
- It provides constant environmental conditions for growth and product formation.

Special thanks to

- Prof. Dr. Tey Beng Ti
- Prof. Madya Dr. Rosfarizan binti Mohamad
- Dr. Farhan binti Mohd Said

Thanks to Dr. Rozaimi bin Abu Samah for proofreading the learning contents.

