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This chapter explains the stress-strain relationship for
different type of materials, develop stress-strain
relationship and analyse the engineering constant for an
unidirectional lamina. Later, the student will discussing
the stress-strain relationship, elastic moduli and
strengths of an angle ply based on an unidirectional

lamina and the angle of the ply.




Learning Outcome

By the end of this topic, student should be able to:

e Develop stress-strain relationship for different type of
materials

e Develop stress-strain relationship for an unidirectional
lamina

e Analyse the engineering constant for an unidirectional
lamina

e Develop stress-strain relationship, elastic moduli and
strengths of an angle ply based on an unidirectional
lamina and the angle of the ply




Introduction

Typical laminate made of three lamina
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Introduction

Homogenization of a lamina vs Homogeneous isotropic material

Case A: Subject the square plate to a pure normal load P in direction 1.
Measure the normal deformations in directions 1 and 2, 8, , and 6, ,,
respectively.

Case B: Apply the same pure normal load P as in case A, but now in
direction 2. Measure the normal deformations in directions 1 and 2,

d,; and 0,;, respectively.



Introduction

Metal — isotropic plate to pure normal load in direction 1
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Introduction

Unidirectional lamina HT
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Review

Stress
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Arbitrary plane
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Cross-section
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Review

Stress
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Strain u = u(x,y,z) = displacement in x-direction at point (x,y,z)

v = v(x,y,z) = displacement in y-direction at point (x,y,z)

Y4 w = w(x,y,z) = displacement in z-direction at point (x,y,z)
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Review

Elastic Moduli

3-D stress state — Linear isotropic material, Hooke’s Law in a x-y-z orthogonal system:
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Elastic Moduli

3-D stress state — Linear isotropic material, Hooke’s Law in a Xx-y-z orthogonal system:

E(1-v) VE VE 0 0 0
(6. |A=29(+y)  (1=2v)(1+y)  (1-2v)(1+V) e
Oy vE E(1-v) VE 0 0 0 €y
(1-2v)(1+v)  (1-2v)(1+v) (1-2v)(1+V)
O:|_ VE VE E(1-v) 0o o ol
Tel f(1-2v)(1+v)  (1-2v)(1+Vv)  (1-2v)(1+V) Y
Tox 0 0 0 G 0 0 Yox
ht'“"_ 0 0 0 0 G 0 h?ly'd
h 0 0 0 0 0 G
i = pg)
where, G= 2(1+v) “stiffness matrix of an isotropic

material”



Review

Strain Energy

Energy is defined as the capacity to do work. In solid, deformable, elastic
bodies under loads, the work done by external loads is stored as recoverable
strain energy. The strain energy stored in the body per unit volume is then

defined as

W= (orect o8t 0:6:F Ty Vo T Yo ¥ T Yoo

1
2



Hooke’s Law for different types of

Materials

Assuming linear & elastic behaviour for a composite is acceptable,
however, assuming it to be isotropic is generally unacceptable!

Anisotropic Material

— — —

G1 Cu Ciz Ciz Cu Cis Ci|l &
G2 Cn Cx» Cxn Cu Cx Cx|| €2
O3 Cai Cs2 Csz Cas Css Cssf] €3
T23 Cu Cp Cgs Cu Cs Cul| Vs
T31 Csi Cs2 Csza Css Css Css|| Ta
t2) [Ca Ce2 Ce3 Cor Cos  Cesl| Yy |

L — b —

[C] = “stiffness matrix”



Hooke’s Law for different types of

Materials

Anisotropic Material

= =

€1 Sn1 S22 Si3z Su S15 Swe|| o1
€2 S21 52 513 Su  S»  Swxl|| 62
€3 S:1 S3» S13 Su S Skl 03
Y2 S S22 Ss3 Su S5 S| T2
Y Ss1 Ss2 Ss3 Ss4a Ss5 0 Sse || Tm
Y12 | ' Ser Se2 Ses Ses Ses Ses || Tz

[S] = “compliance matrix”



Hooke’s Law for different types of Materials

Monoclinic Material




Hooke’s Law for different types of Materials

Monoclinic Material

If In one plane of material symmetry, for example , direction 3 Is
normal to the plane of material symmetry, then the stiffness matrix
reduces to

Cu Cip G 0 0 Ci
C] bl C 772 Cg_g. U D Czﬁ
C13 ng. C33 D D Caﬁ

| Cis Co Cas 0 0 Ces




Hooke’s Law for different types of

Materials

Monoclinic Material

Sn 512 513 0 0 S
S52 S»  Sx
S13 513 53 0 0 S35

-]
o
s

5

[S]=

0 0 0 Ss5  Sss 0
St Sz Sae 0 0 S




Hooke’s Law for different types of Materials

Orthotropic Material

If a material has three mutually perpendicular planes of material
symmetry, then the stiffness is given by




Hooke’s Law for different types of Materials

Orthotropic Material

F511 512 513 0 0 0
512 5» S 0 0 0
[S]= S;3 S» Sa 0 0 0 *
0 0 0 sy, 0 0
0 0 0 0 5. 0
| 0 0 0 0 0 Sl




Hooke’s Law for different types of Materials

Orthotropic Material — 12 engineering constants

Figure (a),

(a) (d)
Therefore,
l/ € = 5,0, Yos =0
B 1
(b‘} (E} E1 = 5120] T31 = D
G,
a, €3 = 51304 T = 0.
I 2 l

: _/

(c) Ty (f)

G,=0,73=0,75,=0, T, =0.




Hooke’s Law for different types of Materials

Orthotropic Material — 12 engineering constants

The Young’s modulus in direction 1, E,, is defined as

o 1
E=—t=—.
& Sy
The Poisson’s ratio, v,,, is defined as
v.o=_8__5Sn
12 — - g "
€ 11
The Poisson’s ratio v, is defined as
v.=_8_ S
13 = - g '
€y 11



Hooke’s Law for different types of

Materials

Orthotropic Material — 12 engineering constants

Figure (b), Figure (c), Figure (d),
o,=00,%0, g,=00,=0, 0,=0,0,=0,0,=0, T 20, Ty = 0,
Oy =0,Ty=0,Ty =0, T3y =0. G, 20, 13=0, 13, =0, 7, = 0. T = 0.
Therefore, Therefore, Therefore,
1 £ = 0 Yoz = SMTB
1
Ex=— Ey=—
S» Sa g, =0 Ya1 =0
g € =0 Ta=0
2 S,, i Sa The shear modulus in plane 2-3 is defined as
vV 5x v =—5—B . Gy = Tizi .
23— - a2 33 ?H 54—'1



Hooke’s Law for different types of Materials

Orthotropic Material — 12 engineering constants

Figure (e), Figure (f),
g,=0,0,=0, o,=00,=0,
0,=0,1,=0#,=0,1,=0. G,=0,1,=0, 15 %0, 1, = 0.
Therefore, Therefore,
1 1
Gy =—. G =

Sss Seo




Hooke’s Law for different types of Materials

Orthotropic Material — 12 engineering constants

12 engineering constants as follow:

Three Young’s moduli, E;, E,, and E,, one in each material axis
Six Poisson’s ratios, V5, Vi3, Vay, Va3, Va3, and Vs, two for each plane

Three shear moduli, G,., Gy, and G;,, one for each plane

However, 6 Poisson’s ratios are not independent of each other,

Vi Via. _ Vay Vaa _ Va “reciprocal Poison’s
E, E, ° E, E, ' E, E; ratio equations”




Hooke’s Law for different types of Materials

Orthotropic Material — 12 engineering constants

Compliance matrix

1 ve v« 0O 0O 0
Eq E1 E1

Vo i Vo 0 0 0
E- E» E>

Vi Vi i 0 0 0
[S]= Ea Ea Ea

0 0 0 i 0 0

G2
0 0 0 0 i 0
Gay
0 0 0 0 0 L
(512




Hooke’s Law for different types of Materials

Orthotropic Material — 12 engineering constants

Stiffness matrix

1-— Vi3 Vis Vo + ViV Va +V5 Vs 0 0 0
E.E A E.E A E.E;A

Vo +V2.3\"31 1_"""lat"""e.l Vi +V12”3] 0 0
E.E A E.E.A E\E.A

[C]= Vi + Vo Va Vi + Vi Vay 1-vipvy 0 o |’

E.E A E,E.A E\E. A

0 0 0 Gy, O 0

0 0 0 0 G, O

0 0 0 0 0 Gy

Where; A= (1 —ViaVa = VoV — VsV — 2"’2]""32‘“'13) / [E1E2 Ez) .



Hooke's Law for different types of Materials

Transversely Isotropic Material

Consider a plane of material isotropy In one of the planes of an
orthotropic body. If direction 1 is normal to that plane (2-3) of isotropy,
the stiffness matrix is given by

— —

Cu Cn Cn 0 0 0
Ci Cn» Cx 0 0 0
Co Cun Con 0 0 0
€=l 0 0 0 cp-cw O 0}
2
0 0 0 0 Cs5 0
0 0 0 0 0 Cxs




Hooke’s Law for different types of Materials

Transversely Isotropic Material

Transverse 1sotropy results in the following relations:

Gy =Ca3, Cpp =Gz, G5 = G, Cyy = Cﬂ;CB v
Su Sw  Su 0 0 0
S5 S»  Sx 0 0 0
[S]= S12 S»  S» 0 0 0 *
0 0 0 25555 0 0
0 0 O 0 5. O
0 0 O 0 0 8]




Hooke’s Law for different types of

Materials

Isotropic Material

If all planes in an orthotropic body are identical, it Is an isotropic
material, then the stiffness matrix is given by

— —

Cn Ci Ci2 0 0 0
Cz Cu Con 0 0 0
Gy Ci2 Cn 0 0 0
(C]= 0 0 0 Cu;Cu 0 0 *
0 0 0 0 Cu—Cp 0
2
0 0 0 0 0 CuCp
2




Hooke’s Law for different types of

Materials

Isotropic Material

Isotropy results in the following additional relationships:

Cyp —C Cy—C
Cii=Cp,Cpp =Cp;3,C6 = 122 == 112 =

CII_C'IE
2
_ Ed-v)
T A 2v)1 4wy
1 E(l-v) vE
_2{{1—2v}(l+v) (1—2v)(1+v)]
_ vE
2= T wWa+y)
E
S 2(1+v)
_G.



Hooke’s Law for different types of

Materials

Isotropic Material

The compliance matrix reduces to

— —

S5m1 Si2 5w 0 0
5o Su  Sni 0 0
[S]= Sz Sn Sn 0 0
0 0 0  2(S;-5) 0
0 0 0 0  2(5;-5;)
0 0 0 0 0 2(5:-5;)




Hooke’s Law for different types of

Materials

Exercise #1

Find the compliance and stiffness matrix for a graphite/epoxy lamina.
The material properties are given below:

E, =181GPa, E, = 10.3GPa , E; = 10.3GPa

"h"u — 028 P 1’13 — {].Ef[} P 1’13 — '[}.2?

GIE — ?.1?GPH P GEE — 3DGPE P GSI — ?DDGPH .




Hooke’s Law for a 2D Unidirectional

Lamina

Plane Stress Assumption o
If a plate is thin and there are no

out-of-plane loads. It can be
_considered to be under plane
- stress

A lamina is thin, one can assume
v that it is under plane stress

Therefore

G,=0,7,=0T5=0.




Hooke’s Law for a 2D Unidirectional

Lamina
Reduction of Hooke’s Law in 3D to 2D

Considering, orthotropic plane stress:

— —_ — [ —

£y 511 512 0 || o,
£ [=[S2 Sz 0|02}
Y12 0 0 Ses || Taz

b - - = -

Inverting the above equation, stress strain relationship as

0, Qu U 0 | 11— =[Q]; “reduced stiffness coefficients”
0, |=|Qn Qn< U | &,

Ti2 0 0 Qs || V12

- - b —a -

Sz — 512 Qﬂ 511

1
Qﬁbz_'

_ 2 ’
511522 — 512 Se6

Q=

S5115:»— 5%1 '



Hooke’s Law for a 2D Unidirectional

Lamina

Relationship of [C] and [S] to Engineering Elastic Constants

For an unidirectional lamina, the engineering elastic constants are:

E, = longitudinal Young’s modulus (in direction 1}
E, = transverse Young's modulus (in direction 2)

v, = major Poisson’s ratio, where the general Poisson’s ratio, v; is
defined as the ratio of the negative of the normal strain in direction
j to the normal strain in direction i, when the only normal load is
applied in direction i

G,, = in-plane shear modulus (in plane 1-2)



Hooke’s Law for a 2D Unidirectional

Relationship of [C] and [S] to Engineering Elastic Constants

Apply a pure tensile load in direction 1 _
If the only nonzero stress is o

o,#0,0,=0,1,=0.
g, 1
. =5,0 b= s,
, L . 5, £y 1191, 1 1
€y = 51201,
—_EB__ S»
Y12 =0. Vi = o '
] . . . E1l Sn
Apply a pure tensile load in direction 2
G, ) . ;
T 6,=0,0,%0, 1, =0. Reciprocal relationship:
2 € = 5,20,, Vi _ Vu
T_’ E, E .
1 €, = 55,0,,
Yi2= 0.

L.



Hooke’s Law for a 2D Unidirectional

Lamina
Relationship of [C] and [S] to Engineering Elastic Constants

Apply a pure shear stress in plane 1-2 _
If the only nonzero stress is 1,
Tlf 6,=0,06,=0and t,, 20.

A T 1
E]:nr GuEi:—.
5 Y2 Ses
T—'l £,=0,
TIE L J
< Yi2= Sﬁﬁtu
Therefore, proved that:
1 Vi2 1 1
5,=— 5]2___r S, =—, 566:_
- E, - Gy



Hooke’s Law for a 2D Unidirectional

L amina

Relationship of [C] and [S] to Engineering Elastic Constants

[Q] relationship to the engineering constants

. ViE; E,
’ Q= 1 ’ Q. =

, and Qes =Gz

Summary:

The unidirectional lamina is a specially orthotropic lamina because normal
stresses applied in the 1-2 direction do not result in any shearing strains in
the 1-2 plane because Q,, = Q,, = 0 = S,, = S,,. Also, the shearing stresses
applied in the 1-2 plane do not result in any normal strains in the 1 and 2
directions because Q,, = Q,, =0 = S;, = S,.

A woven composite with its weaves perpendicular to each other and short
fiber composites with fibers arranged perpendicularly to each other or
aligned in one direction also are specially orthotropic.



Hooke’s Law for a 2D Unidirectional

L amina

Exercise #2

For a graphite/epoxy UD lamina, find the following:

1. Compliance matrix

2. Minor Poisson’s ratio

3. Reduced stiffness matrix

4. Strains in the 1-2 coordinate system if the applied stresses are:

4 0,=-3MPa

lru:ilMPa G] = 21?"14‘1311',r Gz = _SMPQI le == 4MPI':I.

LL ... fOPeErties of the material as below:

E, =181 GPa, E, =10.3 GPa, v,, = 0.28, G, =7.17 GPa.




Hooke's Law for a 2D Angle Lamina

Stress-strain Relationship for Angle Lamina

¥ 0,
' Gy :[T‘]_-l Gz ’
2 1 ._T'ty | \ 1:12
\ = [T] ; “transformation matrix”
/ // | where
y ¢’ s —28¢

[TT'=|s* ¢ 2sc |,

> sc -sc c*—g’
[ 2 s 2sc |
[T]=| s* ¢* 2sc |,
2 2

c=Cos(0), s=S5in(6).

Communitising Technology



Hooke’s Law for a 2D Angle Lamina

Stress-strain Relationship for Angle Lamina

F Oy " ';;)11 t@12 Qlﬁ F €y | where Qi =Quc +Qps* + 2(Q1 +2Q¢ )52(32;

Gy |= @12 gzz 926 €y |/

| T | Qs Qs Qs REA Qi =(Qu1 +Qn —4Qs6)s°c” +Qpp(c* +57),
/ Q= Quis" + Qe +2(Qup +2Q)s°c”,

= [Q] ; “transformed reduced stiffness”

Qlﬁ =(Q11— Q12 —2Qk )‘335 —(Qn—Qn- ZQﬁﬁ)Saﬂf
Qzﬁ = Q11— Q2 — 2Q% )553 —(Qn—Qp— ZQﬁa)EESf

Qss =(Qn + Q0 — 201, - 2@66)5252 +Qeels” + ‘34)*



Hooke’s Law for a 2D Angle Lamina

Stress-strain Relationship for Angle Lamina

€y §11 512 gm 0, _
g c g - S =S8y5c* +(255 +Ssg)sc” + Sps”,
g, |=[52 S»n Sk || Oy | where 11 =513¢" +(2515 + Sg4) 22
S S S
Yy 14 6 66 || Oy B
- S Sip = Spp(s* +¢*) +(S11 + S — S6)5°c”,
/ S = 515" +(251 +Sg6)s°C” + S,

=[S] ; “transformed compliance stiffness”
Si6 = (2811 =251, — Sge)5¢° — (25, — 281, — S¢6)5°C,

Sy = (2811 — 251, — S46)5°C — (285 — 251, — Sg)sC”,

555:2 (2811+2822—481;:— Ssﬁjszcz'i' Ses (54 +-:’:4)-



Hooke’s Law for a 2D Angel Lamina

Exercise #3

Find the following for a 60° angle lamina of graphite/epoxy:..
1. Transformed compliance matrix
2. Transformed reduced stiffness matrix

If the applied stress is g, = 2 MPa, 6, = -3 MPa, and 1,, = 4 MPa, also find
3. Global strains

4. Local strains

5. Local stresses

6. Principal stresses

7. Maximum shear stress
8. Principal strains

9. Maximum shear strains

Use the properties of the material shown in the next slide:



Glass/ Boron/  Graphite/ it

Property Symbol Units epoxy epoxy epoxy rﬁ'é‘

Fiber volume fraction Vi 0.45 0.50 0.70

Longitudinal elastic modulus  E| GPa 38.6 204 181

Transverse elastic modulus E, GPa 8.27 18.50 10.30

Major Poisson's ratio V4o 0.26 0.23 0.28

Shear modulus Gy, GPa 4.14 5.59 7.17

Ultimate longitudinal tensile {g{]”ﬂ MPa 1062 1260 1500
strength

Ultimate longitudinal {g‘f}"” MPa 610 2500 1500
compressive strength

Ultimate transverse tensile (o3) ot MPa 31 61 40
strength

Ultimate transverse {gg}"” MPa 118 202 246
compressive strength

Ultimate in-plane shear (T12) MPa 72 67 68
strength

Longitudinal coefficient of o pm/m/°C 3.6 6.1 0.02
thermal expansion

Transverse coefficient of > Hm/m/°C 22.1 30.3 225
thermal expansion

Longitudinal coefficient of By m/m/kg/kg 0.00 0.00 0.00
moisture expansion

Transverse coefficient of B, m/m/kg/kg 0.60 0.60 0.60

moisture expansion




Hooke’s Law for a 2D Angel Lamina

Answer #3

[ 0.8053x10° -07878x107 —0.3234x10° ]
1.[S] =|-07878x107"  03475x10™°  -0.4696x107"
-03234%107°  —04696x107°  0.1141x107°

[0.2365%x10""  0.3246x10""  0.2005x 10"
2.[Q] =|03246x10" 0.1094x102 0.5419x10" |Pa.
0.2005x 10"  0.5419%x10"  0.3674x 10"

e. | [ o05534x10*

3. 1e, |= [-03078x107|.

¥ 0.5328x 107
xy L

e, | | 0.1367x107
4.1 ¢, |=]-0.2662x107 |.
Yy | | —0.5809x107




Hooke’s Law for a 2D Angel Lamina

Answer #3

o, 0.1714x 107
5. |6, | =[-02714x10" |Pa.
Tyz ~0.4165x 107

2
_ 21,

6. o =00, 1070} 0 4017 5217 MPa 6, =—tan!| - | —29.00°.

max,min 7 2 y 2 G, —0,

4] ) ’ 1 0,—0

7 1 ==Y | 412 =4717 MPa. 6,=—tan"'| ———~ | = 16.00°

max 2 Xy 2 ZTxy

2 2
- . . 1, 4 Vs

8. ¢  —ExTE& N ETE L I Vw | =1960x107, 4.486x10™. ﬂp=~tan1[—” ] = 27.86".

max,min 7 ) 2 2 L Y



Hooke's Law for a 2D Angel Lamina

Answer #3

1 _ £, —E,
9. Tmﬁ\/(ex—zy)zﬂfy =6.448x 107", Bs=5tan‘(— f) = -17.14.




Engineering Constants of an Angle

L amina

Stress-strain Relationship for Angle Lamina in term of engineering

constants;
6 constants;

1 _
1 = Sy,
i — vr'-f — m-'l' = 511(:4 + {2512 + Sﬁﬁ }SZEE + 52254.
] EI 'Ex El i ]
€, G,
S T T :lc4+(i_2"u}szcz+i54
Y E, E, E, 4l E, Gn E E,
YI_I,I’_. - mx - ”Il; 1 _Tryd -
E, E, G, 2. Vy=-ES;

= _E_-c[su(SL1 + ‘74) +(S11+ S5 - Sﬁﬁ)szcz]
=E, h(54+c“)—[l+i—i}szc2 ,
E, E, E Gy



Engineering Constants of an Angle

L amina

Stress-strain Relationship for Angle Lamina in term of engineering
constants;

6 constants;

1 _
3. — = 522
EH
- 51154 + (2512 + Sbﬁ){-'zsz + SEECE;
:is4 ( 2Vyy +i)£‘252+i€4 ,
El El GIE 2
1 _
=5
4, G 66

= 2{2511 + 2522 - 4512 - S&;_.‘ )SZCE + Sﬁ,ﬁ{54 + CII;)

= 2(1 +£ +ﬂ—i)szc2 +i(s4 +c*),
E, E LE Gp Gy



Engineering Constants of an Angle Lamina

Stress-strain Relationship for Angle Lamina in term of engineering
constants;

6 constants;
5. m, = _515E1
=—E;[(51 =25, — 5 }5'-'33 —(255, - 25, - Sﬁﬁ]SSE]

=E, [_g_ﬂ_ri}SCB_r(iJrZ”u —i]sac :
E, E  Gp E, E Gy

=-E[(25;; - 25, - Sﬁﬁ]sac —(25, - 25, - 566]5*73]
=E, [—E—h+i}53c +[i+ 2vy, —i}sc‘q .
E, E Gp E, E Gp




Strength Failure Theories of an Angle

L amina

1. Maximum Stress Failure Theory
Related to MNS theory by Rankine and MSS theory by Tresca
The lamina is considered to be failed if

_(ﬁilj )mft <0< (ﬁ$],;;r; ar

_(Gg )mft <0; < (ﬁg]"}” ar

—(T12)ur < T12 <(T12)u



Strength Failure Theories of an Angle

L amina

Exercise #4

Find the maximum values of S > 0 if a stress of o©. =25, 6,=-35, and 1,, = 4S
Is applied to the 60° lamina of graphite/epoxy. Use maximum stress failure
theory.

(61)u = 1500 MPa  (6€),, = 1500 MPa (o), =40 MPa (0%). =246 MPa (1), = 68 MPa
Answer #4

o) 0.2500 0.7500  0.8660|| 2S
o, |=] 07500 0.2500 -0.8660 || -3S
Ty -0.4330 0.4330 -0.50001| 4s
0.1714x 10"
=|-0.2714x10' |S.
-0.4165x 10"



Strength Failure Theories of an Angle

| amina
Answer #4
—1500 x 10° < 0.1714 x 10'S < 1500 x 10¢ -875.1 x 100 < 5 < 875.1 x 108
246 x 100 < —0.2714 x 10'S < 40 x 10° or ~14.73 x 10° < S < 90.64 x 108
—68 x 10° <« —0.4165 x 10'S < 68 x 108 -16.33 x 108 < S < 16.33 x 108,

All the inequality conditions (and S > 0) are satisfied if 0 < S < 16.33 MPa.
The preceding inequalities also show that the angle lamina will fail in shear.
The maximum stress that can be applied before failure is

6, =32.66 MPa,c, =-48.99 MPa,t,, = 63.32 MPa.



Strength Failure Theories of an Angle Lamina

2. Strength Ratio

In a failure theory such as the maximum stress failure theory, it can be determined
whether a lamina has failed if any of the inequalities are violated. However, this does not
give the information about hoe much the load can be increased if the lamina is safe or
how much the load should be decreased if the lamina has failed

The strength ratio is defined as;

_ Maximum Load Which Can Be Applied

SR
Load Applied

If SR > 1, safe ; SR <1, unsafe; and SR = 1 implies the failure load



Strength Failure Theories of an Angle

L amina

Exercise #5

Assume that one is applying a load of o¢.=2MPas,6,=-3MPa,t,, =4 MPa
to a 60° angle lamina of graphite/epoxy. Find the strength ratio using the
maximum stress failure theory

Answer #5

6,=2R,6,=-3R, 1,,=4R .

6,= 0.1714x10'R R =16.33.

6, =-02714x10' R

T =-04165%10'R .
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3. Failure Envelope

A failure envelope is a three-dimensional plot of the combinations of the NORMAL and
SHEAR stresses that can be applied to an angle lamina just before failure. If the applied
stress is within the failure envelope, the lamina is safe, otherwise it has failed

Exercise #6

Develop a failure envelope for the 60° lamina of graphite/epoxy for a constants
shear stress of t,, = 24 MPa.
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Answer #6
6, =025000, +0.7500c, +20.78 MPa, —1500 <0.25000, +0.7500G,, + 20.78 < 1500

6, =0.75000,+0.2500,, — 20.78 MPa, ‘ —246 < 0.75000, +0.25005,, — 20.78 < 40

15, =-0.43300, +0.4330G, — 12.00 MPa, —68 <-0.4330c,+0.43306, - 12.00 <68 .
As another example, for ¢, = 50 MPa, we have from Inequalities,
—2044 < o, < 1956,
-1051<¢, <93.12,

—79.33 <6, <234.80.
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Answer #6
200 | | l ]
100 - -
o, (MPa) o, (MPa)
50.0 93.1 0=
50.0 793 T=24 MPa
50,0 179 =
50,0 135 =~
25.0 168 ©
25.0 ~104 oo I
250 160
250 ~154
=300 |~
=300 250 =200 —150 —-100 =50 0 50 100

G, (MPa)
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4. Maximum Strain Failure Theory
Related to MNSt theory by St. Venant and MSS theory by Tresca
The lamina is considered to be failed if

C T

—(e7 ) <& <(&))uyss OF
C T

_(EZ }:rﬂ‘ < 82 < {E‘E )!!”-“' or

~(Yi2)ur < Y12 <(Y12) i

The ultimate strains can be found directly from the ultimate strength
parameters and the elastic moduli, assuming the stress—strain response is
linear until failure. The maximum strain failure theory is similar to the
maximum stress failure theory in that no interaction occurs between various
components of strain. However, the two failure theories give different results
because the local strains in a lamina include the Poisson’s ratio effect. In fact,
if the Poisson’s ratio is zero in the unidirectional lamina, the two failure
theories will give identical results,
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5. Tsai-Hill Failure Theory

Based on the distortion energy failure theory of Von-Mises distortional energy yield
criterion. Distortion energy is a part of the total strain energy in a body. The strain
energy in a body consists of two parts; one due to a change in volume and is called the
dilation energy and the second is due to change in shape and is called the distortion
energy. Hill adopted the Von-Mises distortional energy yield criterion to anisotropic
materials. Then, Tsai adapted it to an unidirectional lamina.

The lamina is considered to be failed if

(G; +G3)o1 +(G, +G3)o3 +(Gy +G,)03 —2G36,6; —2G,6,03

— 2G16,03+2G,T3; + 2G5, + 2Gth, < 1

Reduce the equation to:

0, 2_ G,0, + 0, 2+|: Ty ]2{1_
(GT]HH (Gi- ﬁ” (Gg)mr {T'li]uft
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6. Tsal-Wu Failure Theory

Based on the total strain energy failure theory of Beltrami. Tsai-Wu applied the failure
theory to a lamina in plane stress. This failure theory is more general than the Tsai-Hill

failure theory because it distinguishes between the compressive and tensile strengths of a
lamina.

The lamina is considered to be failed if

H,o, + H,0, + Hetyp + Hy 65 + Hy, 63 +He 15 + 2H,,0,0, < 1



7. Comparison of Experimental Results with Failure Theories

LI.II.II

Maximum stress failure theory

Experimental data points

o_ (Ksi)

10

80lllll|

0 15 30 45 60 75
Angle of lamina, 8 (degrees)

Maximum normal tensile stress in the x-direction as a function of angle of lamina using

maximum stress failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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T 1 | I 1 I ] ] I I I I ] I | ] ]
100 —
E i Experimental data points ]
- | |
Maximum strain failure theory
100 = -
L 1 I 1 1 O
0 15 30 45 60 75 S0

Angle of lamina, 8 (degrees)

Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum strain failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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7. Comparison of Experimental Results with Failure Theories

C“I 1 T | T I I T T I T T I T T I
100 —
- Tsai-Hill failure theory .
—_ Experimental data points
:::E L 4
DH
10 +— -
1 L I L 1 I 1 L I ] 1 | 1 1 O
0 15 30 45 G0 75 90

Angle of lamina, 0 (degrees)

Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai-Hill
failure theory. (Experimental data reprinted with permission from Introduction fo Compesite
Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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7. Comparison of Experimental Results with Failure Theories

{-\ 1 I I L I I ! I I I I I I I I 1 1

100

Tsai-Wu failure theory

6. (Ksi)

Experimental data points

30!|||||

0 15 30 45 60 75
Angle of lamina, 0 (degrees)

Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai-Wu
failure theory. (Experimental data reprinted with permission from Introduction to Composite
Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

Communitising Technology
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7. Comparison of Experimental Results with Failure Theories
Observations:

e The difference between the maximum stress and maximum strain
failure theories and the experimental results is quite pmnnunced.

e Tsai—-Hill and Tsai—-Wu failure theories’ results are in gnﬂd agreement
with experimentally obtained results.

* The variation of the strength of the angle lamina as a function of
angle is smooth in the Tsai-Hill and Tsai-Wu failure theories, but
has cusps in the maximum stress and maximum strain failure the-
ories. The cusps correspond to the change in failure modes in the
maximum stress and maximum strain failure theories.
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Exercise #7

Find the maximum values of S > 0 if a stress of ©. =25, 6,=-35, and 1,, = 45
Is applied to the 60° lamina of graphite/epoxy. Use Tsai-Hill failure theory.

(61)a = 1500 MPa (%), =1500 MPa (ol),, =40 MPa (65). =246 MPa (1,),; =68 MPa

Answer #/
Gl = 1_?14 S’ ﬁz - —2?14 S, 1:12 :—4165 S.
1714s Y ( 1.714S 27145 27145 (-4.1655Y
e | — 3 6 1T 5| T = | <1
1500 % 10 1500 % 10° )\ 1500 10 40% 10 68x 10

S<10.94 MPa
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