

SEPARATION PROCESS

PARTICLE HANDLING & PROCESSING PART 1 by Zulkifly bin Jemaat Faculty of Chemical and Natural Resources Engineering email: zulkifly@ump.edu.my

Sedimentation in particle fluid separation

Sedimentation theory

Buoyant force, F_b

$$F_b = \frac{m\rho g}{\rho_p} = V_p \rho g$$

Gravitation force, F_a

 $F_g = mg$

Drag force, F_{D} $F_D = C_D \frac{v^2}{2} \rho A$

Resultant force, F

$$F = F_g - F_b - F_D = m \frac{dv}{dt}$$

At terminal velocity (free settling v_t) $\frac{dv}{dt} = 0$ $v_t = \sqrt{\frac{2g(\rho_p - \rho)m}{A\rho_p C_D \rho}}$

Spherical particle in laminar flow

$$C_D = \frac{24}{\text{Re}} = \frac{24}{D_p v \rho / \mu}$$
$$v_t = \frac{g D_p^2 (\rho_p - \rho)}{18 \mu}$$

18µ

Hindered settling – large number of particle presented

Effective viscosity

$$\mu_m = \frac{\mu}{\psi_p}$$
$$\psi_p = \frac{1}{10^{1.82(1-\varepsilon)}}$$

Effective fluid phase density

$$\rho_m = \varepsilon \rho + (1 - \varepsilon) \rho_p$$

Density different

$$\rho_p - \rho_m = \varepsilon (\rho_p - \rho)$$

Free settling velocity

$$v_{t} = \frac{gD_{p}^{2}(\rho_{p} - \rho)}{18\mu} \left(\varepsilon^{2}\psi_{p}\right)$$

Cyclone

Operating Principles

Flow in cyclone (CFD simulation)

Particle removed by centrifugal force

Communitising Technology

Theory for cyclone separators.

It is assumed that particles on entering a cyclone quickly reach their terminal settling velocities. Particle sizes are usually so small that Stokes' law is considered valid. For centrifugal motion, the terminal radial velocity u_{tR} is given by Eq.(14.4-8), with u_{tR} , being used for u_t ,:

$$v_{iR} = \frac{\omega^2 r D_p^2 (\rho_p - \rho)}{18\mu}$$
(14.4-35)

Since $\omega = v_{tan}/r$, where v_{tan} is tangential velocity of the particle at radius r, Eq. (14.4-35) becomes

$$v_{tR} = \frac{D_p^2 g(\rho_p - \rho)}{18\mu} \frac{v_{tan}^2}{gr} = v_t \frac{v_{tan}^2}{gr}$$
(14.4-36)

where v_i is the gravitational terminal settling velocity v_i in Eq. (14.3-9).

The higher the terminal velocity v_t , the greater the radial velocity v_{tR} and the easier it should be to "settle" the particle at the walls. However, the evaluation of the radial velocity is difficult, since it is a function of gravitational terminal velocity, tangential velocity, and position radially and axially in the cyclone. Hence, the following empirical equation is often used (S2):

$$p_{iR} = \frac{b_1 D_p^2 (\rho_p - \rho)}{18 \mu r^n}$$
(14.4-37)

where b_1 and n are empirical constants.

Cyclone configuration

Fig. 1: Tangential cyclone configuration

Geometry	a/D	b/D	D_e/D	S/D	h/D	H/D	B/D
Stairmand high efficiency	0.5	0.2	0.5	0.5	1.5	4	0.375
Swift High Efficiency	0.44	0.21	0.4	0.5	1.4	3.9	0.4
Swift Low Efficiency	0.5	0.25	0.5	0.6	1.75	3.75	0.4
Lapple Low Efficiency	0.5	0.25	0.5	0.625	2	4	0.25

Table 1	Standard	cyclone	configuration
---------	----------	---------	---------------

Cyclone collection efficiency (Lapple model)

Number of revolutions, N_e

$$N_e = \frac{1}{a} \left[h + \frac{H - h}{2} \right]$$

Cut diameter, d_{pc}

$$d_{pc} = \left[\frac{9\mu b}{2\pi N_e v_i (\rho_p - \rho_g)}\right]^{\frac{1}{2}}$$

The collection efficiency of particle of any size is given by

1

$$\eta_i = \frac{1}{1 + \left(d_{pc} / \overline{d}_{pi}\right)^2}$$

AREA OF APPLICATION

Credit to the authors: Syed Mohd Saufi, Assoc. Prof Ahmad Ziad Sulaiman, Prof Azilah Ajit Hayder Bari, Prof Rosli Mohd Yunus, Prof