SEPARATION PROCESS

CRYSTALLISATION Part 1

by
Zulkifly bin Jemaat
Faculty of Chemical and Natural Resources
Engineering
email: zulkifily@ump.edu.my

Crystallisation Theory

Nucleation theory

-Nucleation is number of new particles formed per unit time per unit volume of mother liquor

Solubility and crystal size
-Solubility refers to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. The resulting solution is called a saturated solution.
-Smaller crystal is better
-Solubility of small crystal better

Homogeneous nucleation

-High supersaturation and no agitation
-Result of random fluctuations of molecules in homogeneous solution

Contact nucleation

-With agitation
-Formation of nuclei occurs in collision between crystals
-Formation of nuclei due to interference of the contacting agent (walls of

Rate of crystal growth $\Delta \mathrm{L}$ Law

*The rate of growth of a crystal face is a distance move per unit time in a direction that is perpendicular to the face. Crystal growth is layer-by-layer process.
*Particle size distribution of crystal and since growth can occur only at the outer face of the crystal , the solute material must be transported to that face from the bulk of the solution.
*The solute molecules reach the face by diffusion through the liquid phase. The usual mass transfer coefficient $k y$ applies in this case.
*The equation for mass transfer of solute A from the bulk solution of supersaturation concentration y_{A}, mole fraction of A , to the surface where the concentration is $y^{\prime} A$ is

$$
\frac{\bar{N}_{A}}{A_{i}}=k_{y}\left(y_{A}-y_{A}^{\prime}\right)
$$

Where k_{y} is the mass transfer coefficient in $\mathrm{kg} \mathrm{mol} / \mathrm{s} . \mathrm{m}^{2}$

$$
\frac{N A}{A i}=k s\left(y A^{\prime}-y A e\right)
$$

Where k_{s} is a surface -reaction coefficient in $\mathrm{kg} \mathrm{mol} / \mathrm{s} . \mathrm{m}^{2}$

$$
\frac{\bar{N}_{A}}{A_{i}}=\frac{y_{A}-y_{A e}}{1 / k_{y}+1 / k_{s}}=K\left(y_{A}-y_{A c}\right)
$$

Where K is the overall mass transfer coefficient.

NOTE

1- when the mass transfer coefficient k_{y} is very large, the surface reaction is controlling and $1 / k_{y}$ is negligible.
2- when the mass transfer coefficient is very small , diffusional resistance is controlling .

The ΔL law for crystal growth :
*It was shown that all crystals that are geometrically similar and of the same material in the same grow at the same time .
*Growth is measured as the increase in the length $\Delta \mathrm{L}$, in mm .

* Mathematically the law of crystal growth can be written as:

$$
\Delta \mathrm{L} / \Delta \mathrm{t}=\mathrm{G}
$$

Where
$\Delta \mathrm{t}=$ time in h and growth rate G is a constant in mm / h

* Particle size distribution of crystal

*An important factor in the design of any crystallizer is the size of the crystal formed or the size distribution of the crystals.
\& One of the standard methods in the size distribution estimation is by using the sieve analysis technique .(please see appendix A.5-3.)
*The common parameter used to characterize the size distribution is the coefficient of variation CV

$$
C V=100 *\left[\left(P D_{16 \%}-P D_{84 \%}\right) / 2 P D_{50 \%}\right]
$$

Where:
$\mathrm{PD}_{16 \%}=$ particle diameter at $\mathbf{1 6 \%}$ retained
*By giving the coefficient of variation and mean particle diameter , a description of the particle size distribution is obtained if the line is approximately straight between 90 and 10\% .

* Model for mixed suspension-mixed product removal crystallizer
*One of the most important types of the models used in the crystallization is what is called (mixed suspension-mixed product removal crystallizer , (MSMPR).
*To analyze the data from a crystallizer, an overall theory must consider combining the effects of nucleation rate, growth rate, and material balance.
*Randolph and larson derived such model. They plotted the total cumulative number of crystals N per unit volume of suspension (usually 1 L) of the size L and smaller versus the size L.

The slope $\mathrm{dN} / \mathrm{dL}$ of this line is denied as a crystal population density n :

$$
\mathrm{n}=\mathrm{dN} / \mathrm{dL}
$$

Where n is the number of crystals /(L.mm).
*This population density is obtained experimentally by screen analysis of the total crystal content of a given volume
*Each sieve fraction by weight is obtained by collection between two closely spaced and adjacent screens. Then

$$
\operatorname{Lav}=(L 1+L 2) / 2
$$

L1 \& L2= the openings in mm in the two adjacent screens

Credit to the authors:

 Syed Mohd Saufi, Assoc. Prof Ahmad Ziad Sulaiman, Prof Azilah Ajit Hayder Bari, Prof Rosli Mohd Yunus, Prof