

SEPARATION PROCESS

ADSORPTION Part 1

by Zulkifly bin Jemaat Faculty of Chemical and Natural Resources Engineering email: zulkifly@ump.edu.my

Adsorption Process

- One or more components of gas or liquid stream are adsorbed on the surface of solid adsorbent.
- Physical adsorption or van der Waals adsorption occurs between the adsorbed molecule and pore surface and is readily reversible
- Overall adsorption process consist several steps solute diffuses from the bulk liquid to the exterior surface of adsorbent, then diffuse inside the pore to the surface of the pore
- Saturated adsorbent can be regenerated by several method
 - Temperature swing (unfavourable)
 - Pressure swing
 - Inert/Purge stripping
 - Displacement purge cycle

- Adsorbent
 - pellets, beads, or granules from 0.1 mm-12 mm
 - Porous structure, with many fine pores and pore volumes up to 50% of total particle volume
 - Physical adsorption or van der Waals adsorption occurs between the adsorbed molecule and pore surface and is readily reversible

Activated carbon

- Microcrystalline material made by thermal decomposition of wood, vegetable shells, coal and etc.
- Surface area 300 1200 m²/g
- Average pore diameter 10 60A
- Adsorb organic compound

Silica gel

- Made by acid treatment of sodium silicate solution and then drying
- Surface area 600 800 m²/g
- Average pore diameter 20 50A
- To dehydrate gases and liquids, and to fractionate hydrocarbon

Activated alumina

- Hydrated aluminum oxide is activated by heating to drive off the water
- Surface area 200 500 m²/g
- Average pore diameter 20 140A
- Mainly used to dry gases and liquids

Molecular sieve zeolite

- Porous crystalline aluminosilicates that form an open crystal lattice containing precisely uniform pores
- Pore diameter 3 10A
- Used for drying, separation of hydrocarbon mixture, etc

Synthetic polymer or resin

Adsorbent

- By polymerizing two major types of monomers
- Made from styrene and divinylbenzene used to adsorb nonpolar organics from aqueous solution
- Made from acrylic esters used to adsorb more polar solutes in aqueous solution

Anion Resin

Cation Resin

Adsorbent - Applications

Typical Applications of Commercial Adsorbents

Туре	Typical Applications
Silica Gel	Drying of gases, refrigerants, organic solvents
	Dessicants in packings and double glazing
	Dew point control of natural gas
Activated alumina	Drying of gases, organic solvents, transformer oils
	Removal of HCl from hydrogen
	Removal of fluorine and boron-fluorine
	compounds in alkylation process
Activated carbon	Nitrogen from air
	Hydrogen from syn-gas and hydrogenation
	processes
	Ethene from methane and hydrogen
	Removal of odours from gases
	Removal of solvent vapors
	Removal of SOx and NOx
	Decolorising of syrups, sugars and molasses
	Water purification

Adsorbent - Applications

Typical Applications of Commercial Adsorbents (cont'd)

Туре	Typical Applications
Zeolites	Oxygen from air
	Drying of air
	Removing water from azeotropes
	Purification of hydrogen
	Separation of ammonia and hydrogen
	Recovery of carbon dioxide
	Separation of and oxygen argon
	Removal of acetylene, propane and butane from air
	Separation of xylenes and ethyl benzene
	Separation of olefins and aromatics from paraffins
	Pollution control (removal of Hg, SOx, NOx)
Polymers and resins	Water purification
·	Recovery and purification of steroids, amino acids
	and polypeptides
	Separation of fatty acids from water and toluene
	Recovery of proteins and enzymes
	Removal of colours from syrups

Regeneration of Adsorbent

Temperature Swing

- Also known as thermal swing cycle
- Heating with embedded stream coils or with a hot purge gas stream
- The elevation of temperature shift the adsorption equilibrium curve
- Bed must be cooled for used in the next cycle
- Time taken few hours or more

Pressure Swing Cycle

- Pressure is reduced at constant temperature and then purging the bed at this low pressure
- Reduction of pressure shift the adsorption equlibrium
- Time taken is very short compared to temperature swing cycle

Adsorbent Regeneration

Inert Purge Gas Stripping Cycle

- By passing a nonadsorbing or inert gas through the bed
- The partial pressure or concentration around the particle is low and desorption occurs
- Regeneration time only a few minute

Displacement Purge Cycle

- The pressure and tempearture are kept constant as in purge gas stripping, but a gas or liquid is used that is adsorbed more strongly than the adsorbate and displace the adsorbate
- Regeneration time only a few minute

Adsorption Isotherm

q, kg adsorbate/ kg adsorbent

c, kg adsorbate/m³ fluid

Batch Adsorption

- To adsorb solutes from liquid solutions when the quantities treated are small in amount, as in pharmaceutical.
- Material balance

$$q_F M + c_F S = qM + cS$$

- q_F = initial concentration of solute in adsorbent (kg/kg adsorbent)
- c_F = initial concentration of solute in solution (kg/m³)
- q = concentration of solute in adsorbent (kg/kg adsorbent)
- c = concentration of solute in solution (kg/m^3)
- M = amount of adsorbent, kg
- S = volume of feed solution, m³
- The intersection of material balance equation and equilibrium line intersection gives the final equilibrium value of q and c.

Batch Adsorption

 The intersection of material balance equation and equilibrium line intersection gives the final equilibrium value of q and c.

Communitising Technology

Credit to the authors: Syed Mohd Saufi, Assoc. Prof Ahmad Ziad Sulaiman, Prof Azilah Ajit Hayder Bari, Prof Rosli Mohd Yunus, Prof