[SEPARATION PROCESS]

ASSIGNMENT 1

All the assumptions must be clearly stated

- 1. Air at 131 °F and 1 atm enters a direct-heat dryer with a humidity, H of 0.01 kg H_2O / kg H_2O dry air. Determine the following from the humidity chart:
 - i) Saturation humidity
 - ii) Relative humidity
 - iii) Percentage humidity
 - iv) Humid volume
 - v) Humid heat
 - vi) Enthalpy
- 2. The following experimental data was obtained from surface drying of a 3.18 cm-thick X 6.6 cm² cross sectional area slab of a thick paste of CaCO₃ from both sides by air at 39.8 °C and a cross-circulation velocity of 1 m/s exhibit the complex type of drying rate curve with the following constants:

Constant rate period:

$$X_o = 10.8\%$$

 $X_{c1} = 8.3\%$
 $R_{c1} = 0.053 \text{ g H}_2\text{O}/\text{h-cm}^2$

First falling rate period:

$$X_{c2}$$
 = 3.7%
 R_{c2} = 0.038 g H₂O /h-cm²

Second falling rate period to X = 2.2%

$$R = 29.03 X^2 - 0.048 X$$

Determine the time to dry a slab of the same dimensions at the same drying conditions, but from $X_o = 0.14$ to X = 0.01. Assume the initial weight of the slab is 46.4 g.