

Course Name SEPARATION PROCESS

Chapter DRYING-Tutorial

by Zulkifly Jemaat Faculty of Chemical and Natural Resources Engineering email: zulkifly@ump.edu.my

Tutorial 1

The room temperature is 26C, pressure; 1 atm and a partial pressure; $p_A = 2.7$ kPa. Calculate

i) Humidity, H;
ii) H_s and H_p
iii) H_r

Humidity Chart/Psychometrics Chart

The air at dry bulb temperature of 60C and a dew point of 26.7C is entering a dryer. Determine, H, H_p , c_s and v_H

Wikimedia commons by AuthorOgawa

In an adiabatic saturator, an air at temperature of 87.8 °C and humidity; H = 0.030 kg H2O/kg dry air is contacted with water and is cooled, then humidified to 90% saturation;

- a) Determine final temperature & humidity ?
- b) At 100 % saturation, determine the temperature & humidity ?

Solution,

- (a) Temperature 42.5 ^oC and Humidity 0.0500 kg H2O/kg dry air.
- (b) Final T = $40.5 \text{ }^{\circ}\text{C}$ and H = $0.0505 \text{ kg H}_2\text{O}/\text{kg dry air}$.

31V13 2012720

Tutorial 3

The water vapor-air mixture having a dry bulb temperature of T =60C is passed over a wet bulb. The wet bulb temperature obtained is 29.5C. What is the humidity of the mixture.

Credit to the authors: Syed Mohd Saufi, Assoc. Prof Ahmad Ziad Sulaiman, Prof Azilah Ajit Hayder Bari, Prof

