

INDUSTRIAL ENGINEERING

Lesson 5 Methods Study

Dr. Gusman Nawanir
Faculty of Industrial Management, Universiti Malaysia Pahang
E-mail: gusman@ump.edu.my

Synopsis

This chapter discusses methods study used to analyze the movement of individuals or materials, activity of human and machines, and body movement.

Expected Outcome

- 1. Understand the objectives of methods study.
- 2. Apply the concepts and tools of methods study to improve work methods.

Methods Study

To improve methods of production

To determine the best way to complete a repetitive task

Resulting in more effective use of material, manpower, machine & equipment

Work Measurement

To assess human effectiveness

To measure how long it takes to complete a task at a normal pace.

Making possible improved planning & control, & as a basis for a sound incentive scheme

Higher Productivity

Methods Study

Also known as methods engineering.

It is a systematic examination of existing methods of work, as a means of improving the work to be more productive, effective & efficient.

It is subjecting every single element of work to eliminate all the unnecessary work element.

Methods study is used to analyze...

Movement of individuals or materials

Activity of human & machines

Body movement (primarily arms & hands)

Purposes of Methods Study

Improve processes & procedures

Improve facility layouts

Reduction of unnecessary fatigue

Improve the use of resources

To make physical working environment better

How to Analyze Current Methods?

Obtain production requirements

Procure engineering data

Describe & sketch workstations

Use process chart

Procure manufacturing & cost data

Process Chart

Chart of workflow, working process, systems, or procedures to record the essential features of a work situation for subsequent analysis.

Graphical representation of the sequence of steps or tasks (workflow) constituting a process, from raw materials to finished product.

Classification of Operation Process Chart **Process Chart** (OPC) Flow Process Chart Macro Level (FPC) Flow Diagram (FD) Process Chart Man-Machine Chart (MMC) Gang Process Chart Micro Level (GPC)

Left-Right Hand Chart

(LRHC)

Symbols Used in Process Chart

Symbols Used in Process Chart

Non-standard process chart symbols

Operations and transportation take place simultaneously

An inspection was performed in conjunction with operations

Example of Process

Operation A large circle indicates Drive nail Mix Drill hole an operation such as Transportation An arrow indicates Move material Move material by Move material by truck a transportation, such as by conveyor carrying (messenger) Storage A triangle indicates Raw material in Protective filing Finished stock a storage, such as bulk storage stacked on pallets of documents

Example of Process

OPC shows...

Time of the processes

Materials used

Only 2 symbols are used in OPC:

Operation: A main step where the part, material or product is usually modified or changed.

Inspection: Indicates a check for quality or quantity.

OPC of electric motor manufacturing

OPC of telephone stand manufacturing

Flow Process Chart (FPC)

Represents all the processes (productive & non-productive), to understand & improve them.

FPC represents graphically the sequence of steps of the process from the 1st process to the end.

Objective of Using FPC

- ✓ To identify all the events involved in a process.
- ✓ To show the relationship among the parts & fabrication complexity.
- ✓ To differentiate between produced & purchased parts.
- ✓ To give information on the requirement of workers.
- ✓ To provide information on the time required to perform each process.
- ✓ To identify nonproduction hidden costs.

ELEMENT DESCRIPTION	SYMBOL				DISTANCE (m)	TIME	
ROSE NO. 10	0	⇒		0	V	80 Mill 667	
50 mmΦ c 1004 bar from stores					-	0 -	
Sent to Cutting Machine		~				15	
Cut to Size	<						2.5
Sent to Lathe		1	_			35	
Delay or wait				>		11	1.8
Facing Drilling and Reaming	<					95 - 9	50.00
To Lathe		$\overline{}$			1	5	111
Facing of other side, turn to size	~				-41		1.8
To gear hobbing machine		1	36	V.		4	Tree -
Wait		10-50		٨			
Machine the Gear	~					DOM: NO.	4.5
To inspection		1				10	0.402
Wait				1		and the water	1
Inspection for size							
To heat treatment deptt.		Z		227		12	0.5
Wait	, -			V		News to the state	
Hardening	<			100			
To inspection		V		2		15	
Wait				>			
Inspection for hardness			1				
To spare part stores		Z				2	3
Storage for reissue				\neg	-		

Source: http://www.yourarticlelibrary.com

	Process of Making Copies at Phot	ocopy Shop
1	Desk Operator Fills out Work Order	
2	Work Order Placed in "Waiting Job" Box	
3	Job Picked up by Operator and Read	
4	Job Carried to Appropriate Copy Machine	
5	Operator Waits for Machine to Vacate	
6	Operator Loads Paper	
7	Operator Sets Machine	
8	Operator Performs and Completes Job	
9	Operator Examines Job for Irregularities	
10	Job Filed Alphabetically in Completed Work Shelves	
11	Job Waits for Take away	
12	Job Carried for Take away by Cashier	
13	Cashier Completes Operation	
14	Cashier Pack Up Job	

Actions	Summary
Operations	6
Transportations	3
Inspections	2
Delays	3
Storages	

Source: http://www.conceptdraw.com

Flow Diagram (FD)

FD is a pictorial representation of the layout, showing the locations of all processes on the FPC.

FD is a helpful supplement to the FPC showing backtracking & possible traffic congestion areas.

Flow Diagram (FD)

Source: Heizer & Render (2011)

Man-Machine Chart (MMC)

MMC is used to study 1 workstation at a time only.

MMC shows the exact time of the relationship between working cycle of worker & operating cycle of equipment/machine at a single workstation.

		MACHINE				
•	Customer	Time in sec.	Clerk	Time in sec.	Coffee Grinder	Time in sec.
0	 Ask grocer for 1 pound of coffee (brand and grind) 	5	Listen to order	5	Idle	5
0	2. 	15	Get coffee and put in machine, set grind, and start grinder	15	Idle	15
	3. 	21	Idle while machine grinds	21	Grind coffee	21
0	<u>4</u> . Wait –	12	Stop grinder, place coffee in package, and close it	12	Idle	12
0		17	Give coffee to customer, wait for customer to pay for coffee, receive money, and make change	17	Idle	17

Source: http://dewihardiningtyas.lecture.ub.ac.id/

MMC for Coffee Store

	Customer	Clerk	Coffee grinder
Idle time	48 sec.	21 sec.	49 sec.
Working time	22	49	21
Total cycle time	70	70	70
Utilization in percent	Customer utilization = $\frac{22}{70} \approx 31\%$	Clerk utilization = $\frac{49}{70} = 70\%$	Machine utilization = $\frac{21}{70} = 30\%$

✓ Dark line (or solid line) represents productive time.

✓ Light line (or dotted line) represents nonproductive time.

Gang Process Chart (GPC)

GPC is MMC showing the activities of many workers.

GPC shows the exact relationship between idle & operating cycle of machine and operator.

GANG PROCESS CHART—PROPOSED METHOD

Hydraulic Extrusion Press Dept. II

Bellefonte, Pa. Plant

Charted by B.W.N.

4-15

Chart G-85

Gang Process Chart (GPC)

Source: https://www.slideshare.net/TamerKhalaf/3-work-chartingmethods-44736448

Left-Right Hand Chart (LRHC)

Also known as two-handed process chart

LRHC is used to show the activities/motions of operator's hand during work (e.g., repetitive assembly).

The purpose is to eliminate unnecessary motion, known as motion economy.

Left hand

Right hand

Pick up base plate
Insert into fixture
Pick up two supports
Locate back plate
Pick up screws
Locate screws
Pick up air driver
Fasten screws
Replace air driver
Pick up centre assembly
Inspect centre assembly
Locate and fix
Switch on timer
Wait to end test
Inspect
Transfer grasp
Put aside

Left-Right Hand Chart (LRHC)

References

- Greene, J. (2013). *Industrial Engineering: Theory, Practice & Application: Business and Production Management, Productivity and Capacity*. South Caroline, USA: Jackson Productivity Research Inc.
- Heizer, J., & Render, B. (2017). *Operations management: Sustainability and Supply Chain Management*, 12th ed. Singapore: Pearson Education, Inc.
- Salvendy, G. (2001). *Handbook of industrial engineering: technology and operations management*. Canada: John Wiley & Sons.
- Turner, W. C., Mize, J. H., Case, K. E., & Nazemtz, J. W. (1993). *Introduction to Industrial and Systems Engineering*. New Jersey: Prentice Hall.

