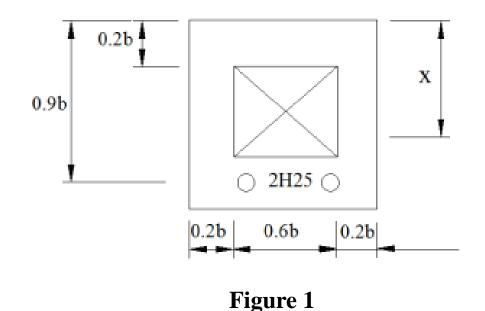
For updated version, please click on http://ocw.ump.edu.my

REINFORCED CONCRETE DESIGN 1

Assessment 1

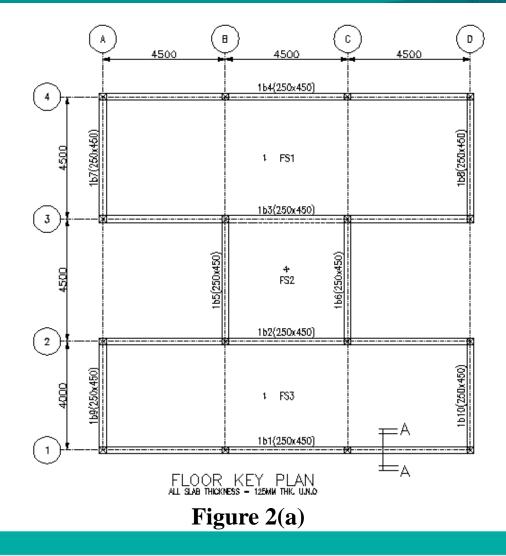

by Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth Resources maszura@ump.edu.my

Question 1: Analysis of section

Figure 1 shows the cross section of a 'box' reinforced concrete element. The element has the compression zone depth, *x*. Prove that the balanced moment for the section,

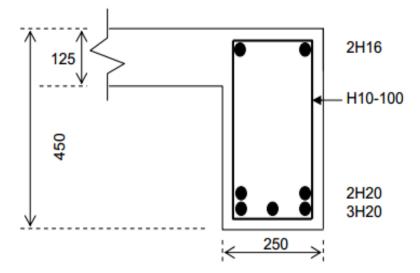
 $M_{bal} = 0.1086 f_{ck} b^3$

Question 2: Design of Beam


Figure 2(a) shows part of the floor plan of a reinforced concrete office building. During construction, slabs and beams are cast together. **Figure 2(b)** is the cross-section of Beam 1/A-D using the previous design for office building. This office building was later changed to become a retail shops which cause all slab panels to carry a larger variable action. Design data related to the action and construction material are as follows:

Variable action for retail shop = 4.0 kN/m^2 Floor finishes, ceiling and building services = 1.5 kN/m^2 Characteristics cylinder strength of concrete, $f_{ck} = 30 \text{ N/mm}^2$ Nominal cover, $c_{nom} = 30 \text{ mm}$

Determine whether beam 1/A-D can withstand the new variable action for retail shop. This beam also carries a 3 m high brickwall with a weight of 2.6 kN/m².



Question 2: Design of Beam (Figure 2(a))

Question 2: Design of Beam (Figure 2(b))

(All dimensions are in mm unless otherwise stated)

Figure 2(b)

End of Assessment

Assessment 1 by Sharifah Maszura Syed Mohsin

Communitising Technology