

REINFORCED CONCRETE DESIGN 1

Design of Beam

Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth Resources maszura@ump.edu.my

Lesson Outcome

- Define and explain the need of beam sizing
- Define and calculate load distribution for analysis simply-supported beam
- Illustrate the SFD and BMD
- Design typical simply supported beam
- Illustrate beam detailing

Introduction

- Reinforced concrete beam design consists primarily of producing member details which will adequately resist the ultimate bending moments, shear forces & torsional moments.
- Serviceability requirements must be considered to ensure that the member will behave satisfactorily under working loads.
- Both ultimate limit state (ULS) and serviceability limit state (SLS) has to be taken into consideration.
- Three (3) basic design stages:
 - Preliminary analysis & member sizing;
 - Detailed analysis & design of reinforcement;
 - Serviceability calculations

Preliminary Analysis & Member Sizing

 The layout & size of members are usually controlled by architectural details & clearances for machinery and equipment.

- Role of engineer:
 - Check the beam sizes are adequate to carry the loading or;
 - Decide on sizes that are adequate

Nominal cover, c

- The concrete cover is necessary to provide:
 - safe transfer of bond forces
 - adequate durability (protect reinforcement against corrosion and damage)
 - fire resistance

- The value of C_{min} is influenced by:
 - The exposure classification
 - Mix characteristics
 - Intended design life of the structure

Effective depth, d

d = distance from the compression face to the center of the tension reinforcement.

d' = distance from the compression face to the center of the compression reinforcement.

$$d = h - cover - \varnothing_{link} - \varnothing_{bar} / 2$$
$$d' = cover + \varnothing_{link} + \varnothing_{bar} / 2$$

Design load calculation

At ultimate limit state:

(for reinforcement design)

Design load, w_{Ed} = 1.35 g_k + 1.5 q_k

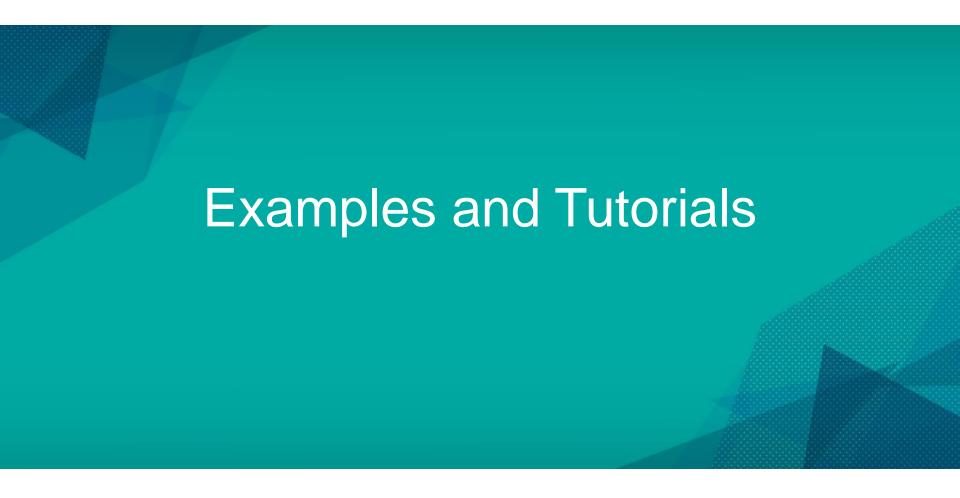
At serviceability limit state:

Design load,
$$w_{Ed} = 1.0 g_k + 1.0 q_k$$

Estimation of action from slab

Actions that applied on a beam may consists of:

- beam self-weight
- dead & imposed loads from slabs
- actions from secondary beams
- other structural /non-structural members
- supported by the beam
- The distribution of slab actions on beams depends on the slab dimension, supporting system & boundary condition


Estimation of action from slab

Three (3) alternative methods:

- 1. Slab shear coefficient from Table 3.15 BS 8110
- 2. Yield line analysis
- 3. Table 6.3 Reinforced Concrete Designer Handbook by Reynold

