For updated version, please click on http://ocw.ump.edu.my

REINFORCED CONCRETE DESIGN 1

Shear Design

by Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth Resources maszura@ump.edu.my

Shear Design by Sharifah Maszura Syed Mohsin

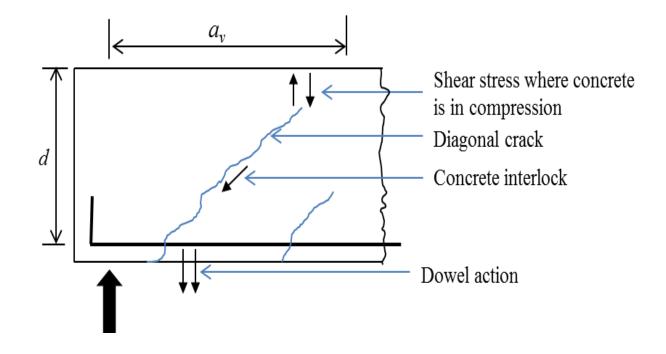
Lesson Outcome

At the end of this lesson, students should be able to:

- Identify section with and without shear reinforcement.
- Design for shear according to code of practice.
- Illustrate shear link detailing.

Introduction

- Shear failure is another factor that has to be considered in the design process.
- The shear stress that comes with the changes in bending moment produces "corner/edge tension"
- The tensile stress causes cracks near the support of a beam.


Shear Failure in a Reinforced Concrete Beam

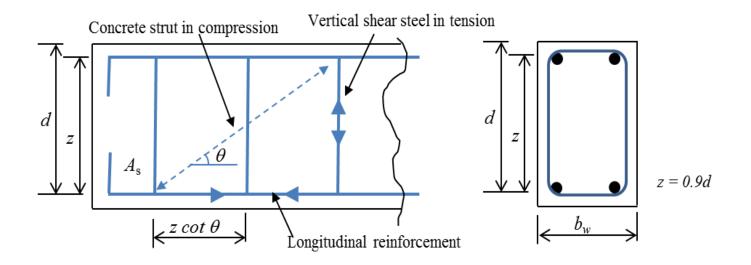
The mechanism failure is complex and depends on the shear span av/d. The following three actions form the mechanism resisting shear in the beam:

- 1. Shear stresses in the compression zone with a parabolic distribution as set out above
- 2. Aggregate interlock along the cracks
- Dowel action in the where the concrete between the cracks transmits shear forces to the bars

Shear Failure in a Reinforced Concrete Beam

Crack at beam due to shear force

Shear Resistance


There are 3 methods to resist shear:

- i. Provide vertical shear reinforcement (the most commonly used)
- ii. Provide bent-up bars (inclined bars)
- iii. Combination of both vertical shear reinforcement and bent-up bars
- Note: The shear reinforcement is also known as stirrups or links.

Shear Design Method: Variable Inclination Method

reinforced concrete beam in shear is represented by an analogous truss

Shear Design Method: Variable Inclination Method

- The top concrete acts as the top compression and diagonal compression members inclined at angle θ to the horizontal.
- The bottom chord is the horizontal tension steel and the transverse tension members.
- The angle of concrete strut varies, depending on the shear force applied.

Shear Design Method: Variable Inclination Method

Three important parameters need to be considered in the derivation of design equation:

- 1. the compressive strength of the diagonal concrete strut
- 2. the required shear reinforcement for vertical ties
- 3. the addition tension required in the bottom chord member.

Transverse Shear Reinforcement

- Complementary shear stress also occurs in flanged.
- Transverse reinforcement should be provided over the flanged width with assumption that this reinforcement acts as ties combined with compressive struts in the concrete.
- It is necessary to check the possibility of failure by excessive compressive stresses in the struts and to provide sufficient steel area to prevent tensile failure in the ties.

Design Procedure for Shear Reinforcement

- Member requiring shear reinforcement design
- Transverse shear reinforcement in flanged section
- Section not requiring shear reinforcement design

All designs are based on recommendation from Eurocode 2 (Section 6.2)

Examples and Tutorial

Shear Design by Sharifah Maszura Syed Mohsin

Communitising Technology