

CHAPTER 3 Batteries

Expected Outcomes

- •What is a battery?
- •Performance of batteries
- •Types of batteries
- •Advantages & Disadvantages
- •Electric vehicles

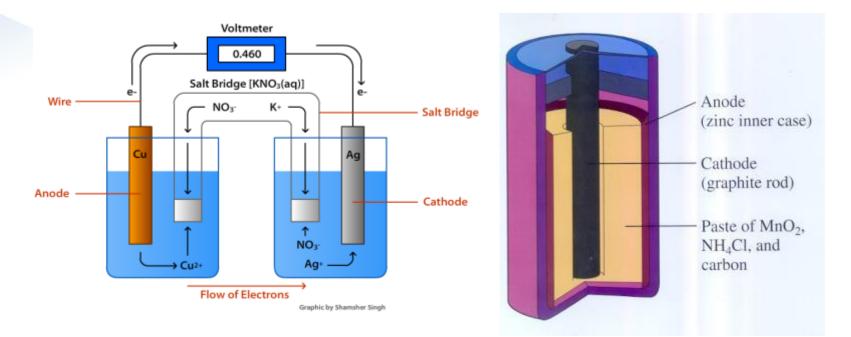
Batteries

Contents

- What is a battery?
- Performance of batteries
- Types of batteries
- Advantages & Disadvantages
- Electric vehicles

What is a battery?

- An electric battery is a device consisting of one or more electrochemical cells (battery cells) that convert stored chemical energy into electrical energy.
- Each cell contains a positive terminal, or cathode, and a negative terminal, or anode. Electrolytes allow ions to move between the electrodes and terminals, which allows current to flow out of the battery to perform work.


Types of battery cells

UMP OPEN

Wet cell- A wet cell battery has a liquid electrolyte.

e.g., Grove cell, Bunsen cell etc.

http://www.upsbatterycenter.com/blog/what-is-a-dry-cell-battery/ 12/19/2015

A dry cell uses a paste electrolyte, with only enough moisture to allow current to flow.

e.g., Zinc-carbon battery or Leclanche cell.

Principle of operation

- A battery consists of some number of voltaic cells. Each cell consists of two half-cells connected in series by a conductive electrolyte containing cathode and anode. The electrode to which anions (negatively charged ions) migrate; the other halfcell includes electrolyte and the positive electrode to which cations (positively charged ions) migrate.
- Cations are reduced (electrons are added) at the cathode during charging, while anions are oxidized (electrons are removed) at the anode during discharge.

Major types of batteries

- Primary batteries is a portable voltaic cell that is not rechargeable. When the supply of reactants is exhausted, energy cannot be readily restored to the battery.
- Secondary batteries can be recharged; that is, they can have their chemical reactions reversed by supplying electrical energy to the cell, approximately restoring their original composition.

For example

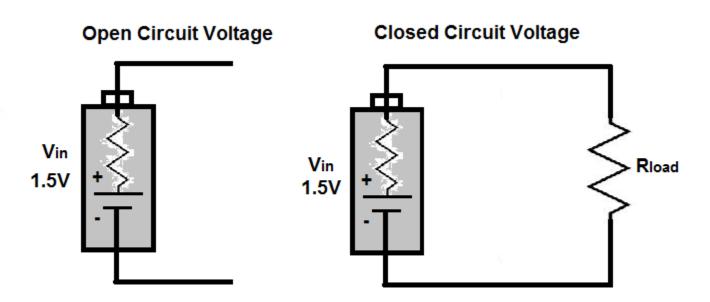
In a zinc-silver oxide battery:

During Discharge

At anode: $Zn + 2OH^{-} \longrightarrow ZnO + H_2O + 2e^{-}$

At cathode: $Ag_2O + H_2O + 2e^- \longrightarrow 2Ag + 2OH^-$

During charge


At anode: $ZnO + H_2O + 2e^- \rightarrow Zn + 2OH^-$

At cathode: 2 Ag + 2OH⁻ \longrightarrow Ag₂O + H₂O + 2e⁻

Open circuit voltage (V_o)

Source:http://www.learningaboutelectronics.com/ Articles/What-is-open-circuit-voltage.php 12/19/2015

- OCV is the difference of electrical potential between two terminals of a device when disconnected from any circuit.
- OCV is mainly affected by electrolyte concentration, degree

Discharge Voltage (V_d)

- Discharge voltage is the prescribed lower-limit voltage at which battery discharge is considered complete.
- Because of electrode polarization and ohmic voltage drops, discharge voltage of a cell is lower than OCV and depends on the value of discharge current (I_d).
- Functional dependence of discharge voltage on discharge current is represented by

$$V_d = V_o - I_d R_{int.}$$

Cell Capacity

 The electric charge, Q_d, that has passed through external circuit over a discharge period t, is given by

$$\mathbf{Q}_{\mathsf{d}=} \mathbf{I}_{\mathsf{d}} \times \mathbf{t}$$

This charge is expressed in Ampere-hours (Ah)

1. Temperature

At lower temperatures reactant utilization coefficients and

discharge voltage are lower.

• Higher temperatures are favorable to side reactions like

corrosion, thus reduces the efficiency of battery.

Con.

2. Lifetime parameters

 Rate of self discharge is important factor in all batteries.

Shelf life- maximum interval between utilization and manufacturing in discharge

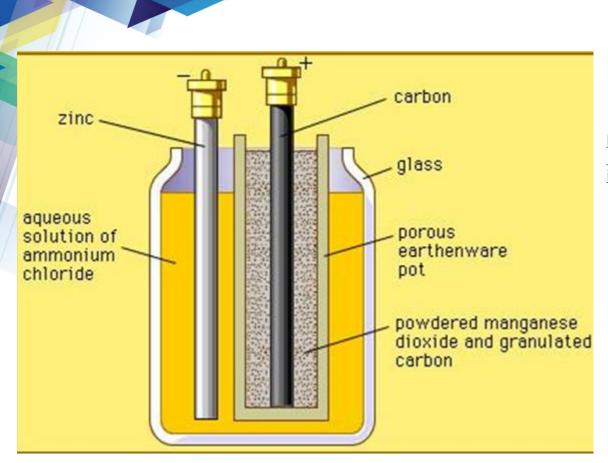
Service life- charge-discharge cycles

Types of batteries

Primary Batteries

- Leclanche (Zinc-carbon) batteries
- Alkaline Manganese Dioxide batteries

Storage Batteries


- Lead-acid batteries
- Nickel-cadmium batteries
- Lithium-ion Batteries

Leclanche (Zinc-carbon) bat

- Invented and patented by the French scientist Georges
 Leclanche in 1866.
- The battery contained a cathode of carbon, a depolarizer of manganese dioxide, and an anode of zinc and a conducting solution of ammonium chloride.

http://kids.britannica.com/comptons/art-106623/In-1866-Georges-Leclancheinvented-a-dry-cell-that-uses. 12/19/2015

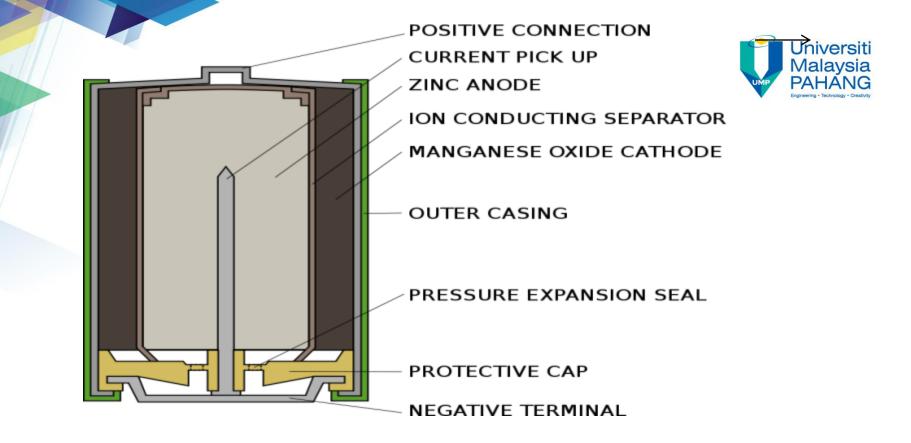
- At cathode: $2NH_4(aq)+2MnO_2(s)+2e- \rightarrow 2MnO(OH)+2NH_3$
- At anode: $Zn \rightarrow Zn^{2+} + 2e$ -
- OCV of freshly manufactured zinc-carbon cells with salt electrolyte varies between 1.55-1.85V

Advantages

- They have appropriate storage life and offer suitable utilization.
- Reasonable electrical parameters.

•

Disadvantages


- Strong voltage decrease during progressive discharge.
- Depending on the load, the final voltage is just 50-70%
 of the initial value.

Alkaline Manganese Dioxide batteries

- Alkaline batteries are dependent upon the reaction between zinc and manganese dioxide (Zn/MnO₂).
- First invented by Waldemar Jungner in 1899.
- It has an <u>alkaline</u> electrolyte of KOH
- In an alkaline battery, the positive electrode <u>manganese</u> <u>dioxide</u> and negative electrode is <u>zinc</u>.

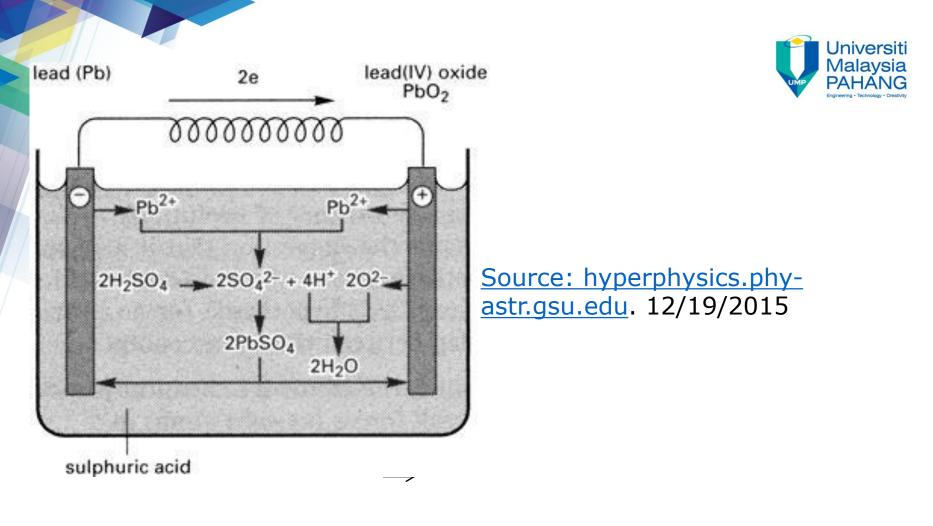
Source: en.wikipedia.org 12/19/2015

Advantages

- It provide better performance at lower temperatures and high discharge currents as compared to Leclanche cells.
- Capacity of an alkaline battery is greater than an equal size Leclanche.

Disadvantages

• They are more expensive the Leclanche cells, but their cost per unit of energy is competitive and resources of raw materials are sufficient for mass production of these batteries.



Lead-acid batteries

- The lead-acid battery is the oldest type of rechargeable battery and was discovered in 1859 by French physicist Gaston Planté.
- Large-format lead-acid designs are widely used for storage in backup power supplies in cell phone towers, high-availability settings like hospitals, and stand-alone power systems.

At anode: $Pb(s) + HSO_4^-(aq)$ $PbSO_4(s) + H^+(aq) + 2e^-$ At cathode: $PbO_2(s) + HSO_4^-(aq) + 3H^+(aq) + 2e^ PbSO_4(s) + 2H_2O(l)$ Overall reaction: $Pb(s) + PbO_2(s) + 2H_2SO_4(aq)$ $2PbSO_4(s) + 2H_2O(l)$

Advantages

 Simple to manufacture and inexpensive — in terms of cost per watt hours.

Low self-discharge.

Disadvantages

- Low energy density
- Environmentally unfriendly —lead content and electrolyte can cause environmental problems.

Nickel-cadmium batteries

- The nickel-cadmium battery is a type of rechargeable battery and metallic Cd as negative electrode and nickel oxide hydroxide (positive plate), and an alkaline electrolyte KOH.
- The first Ni–Cd battery was produced by Waldemar Jungner.
- They can supply high <u>surge currents</u>. This makes them a favourable choice for remote-controlled electric model airplanes, cars, telephones, emergency lighting, as well as camera flash
- Low internal resistance

- At cathode: 2NiO (OH) + $2H_2O + 2e^- \rightarrow 2NiO (OH)_2 + 2OH^-$
- At anode: Cd + 2 OH⁻ \rightarrow Cd (OH)₂ + 2e⁻
- Overall reaction:
- 2NiO (OH) + Cd + 2H₂O \longrightarrow 2NiO (OH)₂ + Cd (OH)₂

Advantages

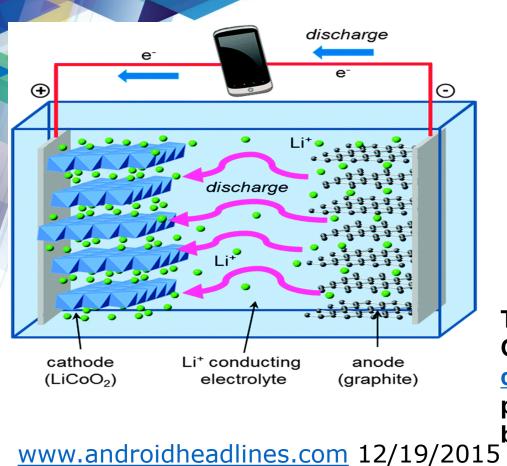
- Simple and fast charge even after long time storage.
- High number of charge/discharge cycles if properly maintained, the NiCd provides over 1000 charge/discharge cycles. Good load performance.

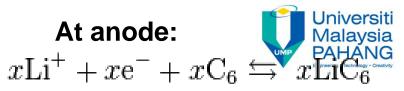
Disadvantages

- Relatively low energy density.
- Environmentally unfriendly.

Lithium-ion Batteries

•




- . The positive electrode is a metal oxide and negative electrode is made from carbon and the electrolyte is a lithium salt in an organic solvent.
- Lithium batteries were first proposed by M. S.
 Whittingham, at Binghamton University.

- The electrolyte is typically a mixture of organic carbonates such as <u>diethyl carbonate</u> or <u>ethylene carbonate</u> containing <u>complexes</u> of Li ions. These nonaqueous electrolytes generally use non-coordinating anion salts such as lithium tetrafluoroborate (LiBF4) lithium perchlorate (LiClO4), lithium hexafluoroarsenate monohydrate (LiAsF6), etc.
- It reacts vigorously with water to form <u>lithium</u> <u>hydroxide</u> and <u>hydrogen</u> gas.

At cathode:

 $LiCoO_2 \leftrightarrows Li_{1-x}CoO_2 + xLi^+ + xe^-$

The overall reaction has its limits. Overdischarge supersaturates <u>lithium</u> <u>cobalt oxide</u>, leading to the production of <u>lithium oxide</u>, possibly by the following irreversible reaction

 $\text{Li}^+ + \text{e}^- + \text{LiCoO}_2 \rightarrow \text{Li}_2\text{O} + \text{CoO}$

• Overcharge up to 5.2 volts leads to the synthesis of cobalt (IV) oxide

$$LiCoO_2 \rightarrow Li^+ + CoO_2 + e^-$$

Advantages

- High energy density potential for yet higher capacities.
- Relatively low self-discharge.
- Low Maintenance.

Disadvantages

- Expensive to manufacture .
- Better manufacturing techniques and replacement of rare metals with lower cost.

TGV trains at Paris Gare de l'Est

Source: en.wikipedia.org 12/19/2015

Thank you

