

ENVIRONMENTAL ENGINEERING

Chapter 4 : Waste Water Treatment (Part 3)

by Siti Hajar Noor Faculty of Chemical & Natural Resources Engineering hajarnoor@ump.edu.my

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Chapter Description

Topic

- Sludge treatment
- Advance wastewater treatment
- Expected Outcomes
 - Classify the treatment processes involved in wastewater treatment
 - Interpret the concept in wastewater treatment which consists of primary, secondary, sludge and advance treatment
- References
 - Peavy, H.S., Rowe, D.R. and Tchobanoglous, G., Environmental Engineering, McGraw Hill, 1985.
 - Mackenze, I.D., Introduction to Environmental Engineering, 4th Edition, Davis A. Cornell, Mc Graw Hill, 2008.
 - Sawyer, C.N. Chemistry for Environmental Engineerin. 4th Edition, McGraw Hill, 1994.
 - Martin, T.A. and David, W.H. Fundamental of Environmental Engineering. 2003.
 - Environmental Quality Act 1974 (Subsidiary Legislation), International Law Book, Service June 2002.

SLUDGE TREATMENT

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>

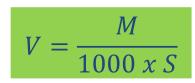
- Sludge characteristics
- Sludge thickening
- Sludge digestion
- Sludge disposal

• Sludge disposal facilities is a function of volume of sludge to be handled, cost saving attained by volume reduction.

Primary sludge	Secondary sludge
 From primary settling, 40 – 60% of influent solids 	 Solids escape from primary settling
 Inorganic solids & coarser organic colloids 	 Primary biological solids
 More concentrated. 	 Consistency depends on treatment process

Sludge treatment - thickening

- Vacuum filtration and centrifugation semisolid.
- Gravity thickener horizontal agitation, suspended-culture system sludge, double solid content.
- Dissolved air flotation flocculent nature, secondary effluent.



The quantity of solids can be determined by the following equation:

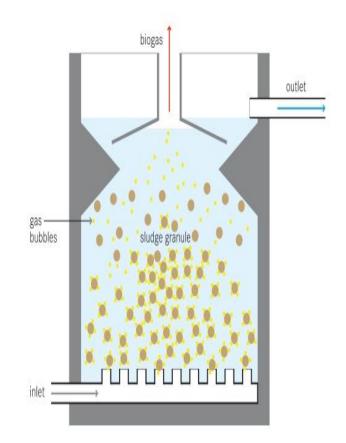
$$M_p = \xi \, x \, SS \, x \, Q$$

where
$$M_p = mass of primary solids \left(\frac{kg}{d}\right)$$
, $\xi = efficiency of primary clarifier$,
SS = total suspended solids in effluent $\left(\frac{kg}{m^3}\right)$, $Q = flow rate \left(\frac{m^3}{d}\right)$

The volume of the primary sludge is given by:

where
$$V = volume \ of \ sludge \ produced\left(\frac{m^3}{d}\right)$$
,
 $M = mass \ of \ dry \ solid\left(\frac{kg}{d}\right)$,
 $S = solids \ content \ expressed \ as \ a \ decimal \ fraction$,
 $1000 = density \ of \ water(\frac{kg}{m^3})$

The mass of secondary solids:


 $M_s = Y' x BOD_5 x Q$

where
$$M_s = mass of secondary solids\left(\frac{kg}{d}\right), Y' = biomass conversion factor\left(\frac{kg}{kg}\right),$$

 $BOD_5 = BOD_5$ removed by secondary treatment $\left(\frac{kg}{m^3}\right), Q = flow rate\left(\frac{m^3}{d}\right)$

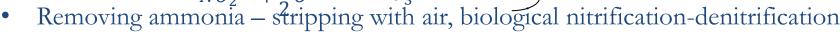
- Anaerobic digestion normally for dealing primary sludge due to readily available organics that would induce a rapid growth of biomass if treated aerobically.
 - Function convert sludge to liquids and gases
 - High rate digesters are more efficient consists of two stage anaerobic sludge digester
 - First stage, completely mixed, second, stratified
- Aerobic digestion involves stabilizing sludge wasted from aeration systems (after secondary clarifier)

Source:https://upload.wikimedia.org/wikipedia/commons/d/da/Schematic_of_the_Upflow_Anaerobic_Sludge_Blanket_Reactor_UASB.jpg

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

- Several options are available for ultimate disposal of wastewater sludge, which includes:
- a) Incineration raw sludge.
- b) Placement in sanitary landfill raw/digested sludge.
- c) Soil fertilizer/soil conditioner nonhuman consumption, liquid state (spraying, ridge & furrow, direct injection).

Advanced wastewater treatment


- Referred to as tertiary treatment.
- Nutrient removal (nitrogen and phosphorus).
- Solids removal.

Nutrient removal - nitrogen

- Results from biological decomposition of proteins and from urea discharged in body waste.
- Nitrogen converted to free ammonia or to ammonium ion.
- These two species together termed as ammonia nitrogen. $NH_4^+ \iff NH_3^o + H^+$
- Ammonia nitrogen will be oxidized to nitrate

 $NH_4^{+} + \frac{3}{2}O_2 \longrightarrow NO_2^{-} + 2H^{+} + H_2O$ Nitrification by bacteria $NO_2^{-} + \frac{1}{2}O \longrightarrow NO_3^{-}$ Removing ammonia – stripping with air, biological nitrification-denitrification

- Air stripping Consists of converting ammonium to the gaseous phase and then dispersing the liquid in air. Complete conversion to ammonia at pH 11, using lime.
- Nitrification denitrification Ammonia nitrogen converted to nitrogen gas, N_2 by biological processes. N_2 is inert and does not react with the wastewater.

Denitrification – nitrate is reduced to N₂ gas.

$$NO_3^- + \frac{5}{6}CH_3OH \longrightarrow \frac{1}{2}N_2 + \frac{5}{6}CO_2 + \frac{7}{6}H_2O + OH^-$$

- Most phosphate in the form of orthophosphates (negative radicals PO_4^{3-} , HPO_4^{2-} , $H_2PO_4^{-}$)
- Removal accomplished with chemical precipitation orthophosphates combine with trivalent aluminum / iron cations to form a precipitate:

$$Al^{3+} + (H_n PO_4)^{(3-n)-} \longrightarrow AlPO_4 \$ + nH^+$$

Fe³⁺ + (H_n PO_4)^{(3-n)-} \longrightarrow FePO_4 \\$ + nH^+

Solid removal

1. Suspended solids removal

- Several methods are available including centrifugation, air flotation, mechanical microscreening.
- In current practice, granular media filtration is the most commonly used process (moving bed filters, pulsed bed filter).
- Sand filters have been used to polish effluents from septic tank & other anaerobic treatment units.

2. Dissolved solids removal

 Methods used includes ion exchange, microporous membrane filtration, adsorption and chemical oxidation to decrease the dissolved solids content of water.

End of Chapter 4

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>

Author Information

Credit to the author: Dr Norhanimah Hamidi

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.