

ENVIRONMENTAL ENGINEERING

Chapter 4 : Waste Water Treatment (Part 1) Primary Treatment

by Siti Hajar Noor Faculty of Chemical & Natural Resources Engineering hajarnoor@ump.edu.my

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Chapter Description

- Topic
 - Primary treatment
- Expected Outcomes
 - Classify the treatment processes involved in wastewater treatment
 - Interpret the concept in wastewater treatment which consists of primary, secondary, sludge and advance treatment
- References
 - Peavy, H.S., Rowe, D.R. and Tchobanoglous, G., Environmental Engineering, McGraw Hill, 1985.
 - Mackenze, I.D., Introduction to Environmental Engineering, 4th Edition, Davis A. Cornell, Mc Graw Hill, 2008.
 - Sawyer, C.N. Chemistry for Environmental Engineerin. 4th Edition, McGraw Hill, 1994.
 - Martin, T.A. and David, W.H. Fundamental of Environmental Engineering. 2003.
 - Environmental Quality Act 1974 (Subsidiary Legislation), International Law Book, Service June 2002.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

Source:http://www.waternews.ir/wp-content/uploads/2015/07/treatment_process1_lg.jpg

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Sludge Treatment

• Concentrate impurities into solid form and separate it from bulk liquid.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Wastewater Characteristics

- To design a treatment process properly, characterization of wastewater is perhaps the most critical step.
- Usually classified as industrial wastewater or municipal wastewater
- Wastewater treatment system composed of a combination of unit operation (contaminant removal by physical forces) and unit processes (involve biological and/or chemical reaction) designed to reduce certain constituents of wastewater to an acceptable level

Table 5-1: Important wastewater contaminants Universiti Malaysia PAHANG

Contaminant	Source	Environmental significance
1. Suspended solid	Domestic use, industrial wastes, erosion by infiltration/inflow.	Cause sludge deposits & anaerobic conditions in aquatic environment.
2. Biodegradable organics	Domestic & industrial wastes.	Cause biological degradation, which may use up O_2 in receiving water & result in undesirable conditions.
3. Pathogens	Domestic waste	Transmit communicable diseases.
4. Nutrients	Domestic & industrial waste	May cause eutrophication
5. Refractory organics	Industrial waste	May cause taste & odor problems may be toxic or carcinogenic
6. Heavy metals	Industrial waste, mining, etc.	Are toxic, may interfere with effluent reuse
7. Dissolved inorganic solids	Increases above level in water supply by domestic and/or industrial use.	May interfere with effluent reuse.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Terminology in Wastewater Treatment

Unit Operations	• Contaminants removal by physical forces.
Unit Processes	• Biological/chemical reaction.
Reactor	• Vessel, where unit operation/processes took place.
Wastewater Treatment System	 Combination of unit processes and operations.
Primary Treatment	• Remove solid materials from incoming wastewater.
Secondary Treatment	 Consist of biological conversion of dissolved & colloidal organics into biomass.
Tertiary Treatment	• Further removal of suspended solids & nutrients.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>

Table 5-3: Unit operations, unit processes, & systems Universition Malaysia PAHANG for wastewater treatment.

Contaminant	Unit operation, unit process, or treatment system
1. Suspended solids	Sedimentation, Screening & comminution, filtration variations, flotation, chemical-polymer addition, coagulation/ sedimentation, land treatment systems
2. Biodegradable organics	Activated-sludge variations, fixed film: trickling filters, rotating biological contactors, lagoon & oxidation pond variations, intermittent sand filtration, land treatment systems, physical-chemical system.
3. Pathogens	Chlorination. Hypochlorination,. Ozonation, land treatment systems.
4. Nutrients:(a) Nitrogen.(b) Phosphorus	Suspended growth nitrification & denitrification variations, Fixed film nitrification & denitrification variations, ammonia stripping, ion exchange, break point chlorination, land treatment systems. Metal-salt addition, lime coagulation/ sedimentation, biological-chemical phosphorus removal, land treatment systems.
5. Refractory organics	Carbon adsorption, tertiary ozonation, land treatment systems.
6. Heavy metals	Chemical precipitation, ion exchange, land treatment systems
7. Dissolved inorganic solids	Ion exchange, reverse osmosis, electrodialysis.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Wastewater Treatment Overview

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Communitising Technology

Universiti

PRIMARY TREATMENT

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

- Purpose remove coarse solids from wastewater, first operation (prevent blockage).
- Device with openings for removing bigger suspended or floating matter in sewage which would otherwise damage equipment or interfere with satisfactory operation of treatment units.
- Coarse screens also called racks, are usually bar screens, composed of vertical or inclined bars spaced at equal intervals across a channel through which sewage flows

Bar Type Coarse or Medium Screen

OER Environmental Engineering by Siti Haja Creative Commons Attribution-NonCommen

2- Comminating

- Shredding device, intercept the coarse solid and shred.
- Basic part screen & cutting teeth
 - High cost Comminutor

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

3- Grit removal

• Compose of inorganic solids and heavy organic

• Consists of enlarged channel area to reduced flow velocities so grit will settle.

• Deposited grit removal by mechanical scrapper.

• Remove type 1 settling (discrete particles).

• Grit chambers: basin to remove the inorganic particles to prevent damage to the pumps, and to prevent their accumulation in sludge digestors.

Souce:https://www.google.com.my/imgres?imgurl=https%3A%2F%2Fupload.wikime dia.org%2Fwikipedia%2Fcommons%2F2%2F20%2FParallel_Plate_Separator.png&im grefurl=https%3A%2F%2Fcommons.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

4- Flow Measurement

- Hydraulic loading rates.
- Measuring flow-Parshal flumes & Palmer-Bowlus flumes.
- Application chemical additives, air volume, recirculation rates depends on hydraulic flow rate.
- Record of flows should be kept to establish trends in flow quantities to estimate future capacity needs

Source:https://upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Parshall_Flume.svg/ 2000px-Parshall_Flume.svg.png

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5- Primary sedimentation

- Designed to concentrate and remove suspended organic solids from the waste water.
- Suspended solids in wastewater are sticky & flocculate naturally, settling operations as type-2 settling (flocculating particles).
- Primary sedimentation in a municipal wastewater treatment plant is generally plain sedimentation without the use of chemicals
- It constitutes *flocculent settling*, and the particles do not remain discrete as in the case of grit, but tend to agglomerate or coagulate during settling.
- Effect secondary wastewater-treatment unit.
- Accomplish by long-rectangular tanks or circular tanks.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

Source:http://s0.geograph.org.uk/geophotos/01/48/19/1481916_deed4570.jpg

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>

SECONDARY TREATMENT

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

SECONDARY TREATMENT

- The effluent from primary treatment still contains 40-50 % of the original suspended solids.
- Combinations of chemical-physical processes:
 - coagulation, microscreening, filtration, chemical oxidation, carbon adsorption, etc. can be used to remove solids & reduce BOD to an acceptable level.
 - High cost not commonly used.
- Biological processes:
 - Microorganisms use the organics in wastewater as food supply and convert them into biological cells, or biomass.
 - Because wastewater contains a wide variety of organics, a wide variety of organisms is required for complete treatment.
 - Practically used.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

Typical Secondary Treatment

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

SECONDARY TREATMENT

- 1. Growth and food utilization
- 2. Suspended culture systems
- 3. Activated sludge
- 4. Ponds and lagoons
- 5. Attached culture systems
- 6. Secondary clarification

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

1- Growth & Food Utilization

- Biomass microorganism use organic in wastewater & convert to biological cells.
- Lag phase acclimation period*.
- Log growth phase maximum growth.
- Stationary phase production of new cellular material offset.
- Endogenous phase biomass slowly decrease.

*Acclimatization is the process in which an individual organism adjusts to a gradual change in its environment, allowing it to maintain performance across a range of environmental conditions.

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

In the log-growth phase, the biomass increases according to:

$$\frac{dX}{dt} = kX$$

dX/dt = the growth rate of the biomass (mg/L.t)

X = the concentration of biomass (mg/L)

k = the growth rate constant, t^{-1}

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

$$k = \frac{k_0 S}{K_s + S}$$

 $k_0 = maximum growth rate constant, t^{-1}$

S= concentration of the limiting food in solution, mg/L, BOD, COD or total organic carbon (TOC).

Limiting food concentration S, mg/L

$K_s = half$ saturation constant

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Communitising Technology

Universiti Malaysia PAHANG

- When $S < K_s system$ is food-lin $r_x = constant$
- When S = K_s, the growth rate constant, $k = \frac{1}{2}k_o$

• Y = decim
biomass:
$$r_{s} = -\frac{r_{x}}{Y} = -\frac{k_{0}SX}{Y(K_{s} + S)}$$
$$=$$
$$\frac{mg/L \, biomass}{mg/L \, food \, utilized}$$

 $r_s = dS/dt = rate of food utilization$ Y (aerobic) = 0.4- 0.8 kg biomass/kg BOD₅ Y (anaerobic) = 0.08 to 0.2 kg biomass/kg BOD₅

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

- External factor affect the rate of biomass production & food utilization:
 - a) Temperature.
 - b) pH.
 - c) Toxin.
- Factors affecting biomass growth:
 - a) Toxicants (poison the microorganism).
 - b) Salt concentration (interfere with internal-external pressure).
 - c) Oxidants (destroy enzyme & cell materials).
- Reactors may contain:
 - a) Suspended culture microorganism suspended in the wastewater either single or cluster cells called flocs.
 - b) Surrounded by wastewater which contains their food.
 - c) Attached cultures masses of organism adhered to inert surface.
 - d) Wastewater passing over the microbial film.

To be continued....

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>

Author Information

Credit to the author: Dr Norhanimah Hamidi

OER Environmental Engineering by Siti Hajar Noor (editor) work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.