

ENVIRONMENTAL ENGINEERING

Chapter 3: Water Treatment (Part 2)

Physical, Chemical & Biological Processes

by
Siti Hajar Noor
Faculty of Chemical & Natural Resources Engineering
hajarnoor@ump.edu.my

Chapter Description

Topic

- Physical process
- Chemical process
- Biochemical process

Topic Outcomes

- State the principles and unit operation involves in physical, chemical and biochemical processes in the treatment.
- Discuss the unit operation involves in the process

References

- Peavy, H.S., Rowe, D.R. and Tchobanoglous, G., Environmental Engineering, McGraw Hill, 1985.
- Mackenze, I.D., Introduction to Environmental Engineering, 4th Edition, Davis A. Cornell, McGraw Hill, 2008.
- Sawyer, C.N. Chemistry for Environmental Engineerin. 4th Edition, McGraw Hill, 1994.
- Martin, T.A. and David, W.H. Fundamental of Environmental Engineering. 2003.
- Environmental Quality Act 1974 (Subsidiary Legislation), International Law Book, Service June 2002.

Contents

1. Physical Processes

Dilution

Sedimentation & Resuspension

Filtration

Gas Transfer

Heat Transfer

2. Chemical Processes

Chemical Conversion

3. Biochemical Processes

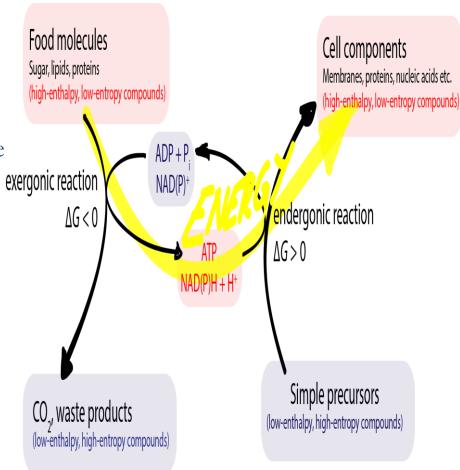
Metabolic processes

Microorganism in natural water system

Dissolved oxygen balance

Organic discharge & stream ecology

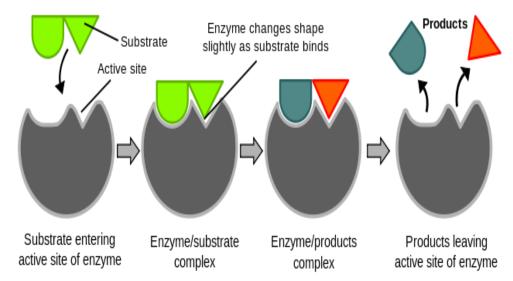
PART 2

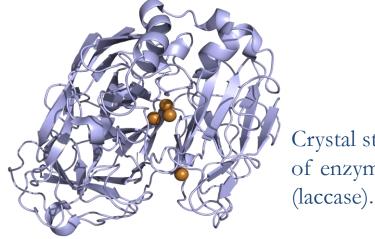


1-Metabolic Processes

Universiti Malaysia PAHANG

- Metabolism- sum total of the processes by which living organism take and use food for subsistence, growth and reproduction.
- Two types of process (occur simultaneously):
 - Catabolism breaks down molecules (e.g. glucose) into smaller units to release energy.
 - Anabolism –the process by which the body utilizes the energy released by catabolism to synthesize complex molecules (e.g. protein, nucleic acids, etc.).
- Endegenous catabolism organisms used stored food for maintenance energy in a process.
- Each type of microorganism has different metabolic pathway; specific reactants and specific end products.


Source:https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Catab olism%2C_energy_carriers_and_anabolism.png/640px-Catabolism%2C_energy_carriers_and_anabolism.png



Enzyme:

- Organic catalyst that influence reaction without becoming reactant themselves.
- Lower activation energy to initiate reactions.
- Revert to its original form for reuse.
- Adaptive enzymes: produced by cell when they are exposed to unusual, toxic substances
 - Microorganism capable of decomposing and utilizing the toxic compound (e.g.: phenol-splitting bacteria)

Source:https://upload.wikimedia.org/wikipedia/commons/thumb/2/24/Induced fit diagram.svg/1280px-Induced fit diagram.svg.png

Crystal structure of enzyme (laccase).

2-Microorganism in Natural Water System

Bacteria

- Primary decomposers of organic material.
- Classified according to energy and material sources they require.
 - Autotrophs derive both energy & material from inorganic sources:
 - Oxidize nitrogen and sulfur to stable end products.
 - Heterotrophs derive both energy & material from organic compound:
 - Most important in degradation of organic matters.
 - *Phototrophs* utilize sunlight for an energy source, inorganic substance for material source.

Protozoa

- Ingest solid organic for foods.
- Consume organic
 materials & colloidal
 matters.

- Algal photosynthesis.
 - In presence of sunlight, algae metabolize inorganic compound with oxygen as waste.
 - Excessive nutrient & bright sunlight
 algal produce too much O₂ thus
 the water become saturated.
 - In the absence of light, catabolism
 may deplete DO to the point where
 fish kills occur (heavy algal growth).

$$CO_2 + 2H_2O \xrightarrow{light} CH_2O + O_2 + H_2O$$

$$CH_2O + O_2 \longrightarrow CO_2 + H_2O$$

Source:https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQYzo2Bq-2_bq68BCGdxaEyFdIpAvHp81m8oyudYK9VpZWyss-J

- At least 2 mg/L DO to maintain aquatics life.
- Two mechanism are known to contribute oxygen to surface water which are:
 - a) Reaeration (dissolution of O_2 from atmosphere).

$$D = C_s - C$$

Where D is DO deficit; C_s is equilibrium concentration; C is oxygen concentration

Greater the D, greater the reaeration (DO decreased).

b) Algal photosynthesis (produce O_2).

Rate of oxygen removal

The rate at which dissolved O₂ disappears from the stream.

$$r_D = k_1 L_t$$

$$k_T = k_{20} \theta^{T-20^{\circ}}, \theta = 1.047$$

 $\mathbf{r}_{\mathbf{D}}$: rate of O_2 deficit due to O_2 utilization.

 \mathbf{k}_1 : reaction rate constant as described $= k_1 L_t$ in chapter 2.

L_t: amount of O₂ remain at time t.

Kate of oxygen addition

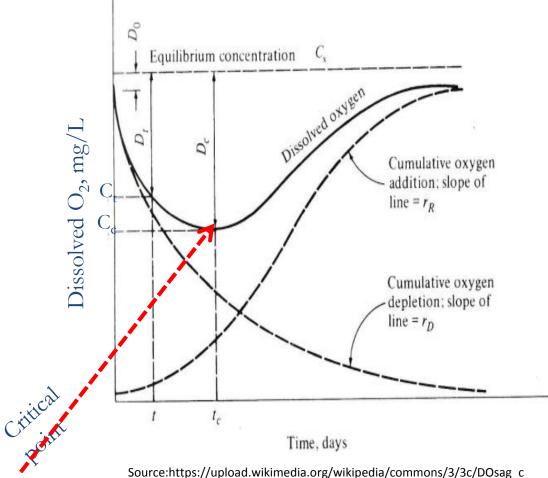
The rate of reaeration is a first order reaction with respect to magnitude of the O₂ deficit.

$$r_R$$

$$= -k_2 D$$

$$k_T = k_{20} \theta^{T-20^{\circ}}, \theta = 1.016$$

 $\mathbf{r}_{\mathbf{R}}$: rate at which O_2 dissolve from atmosphere.


 \mathbf{k}_2 : reaeration rate constant. $D = C_s - C$

 $= -k_2D$ D: dissolve O₂ deficit defined by:

The oxygen sag curve

- Oxygen demand causes an oxygen deficit (oxygen shortage).
- The greater the oxygen deficit, the greater the rate of natural oxygen replenishment from the atmosphere into the stream.
- These two concurrent processes of oxygen consumption and oxygen replenishment produce an oxygen sag curve.

urve.jpg

• Streeter-Phelps

equation:

$$D_t = \frac{k_1 L_o}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right) + D_o e^{-k_2 t}$$

 D_t : oxygen deficit at in river at time t.

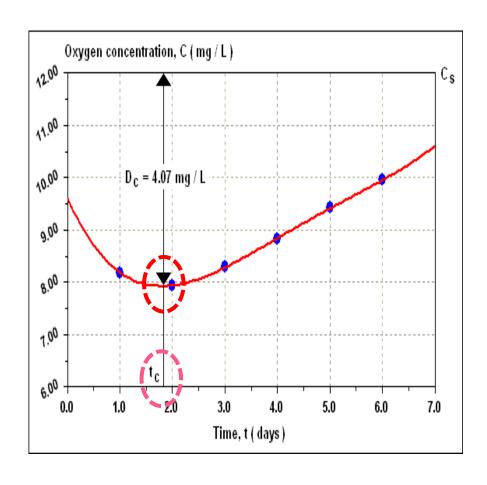
D_o: initial oxygen deficit at in river at time 0.

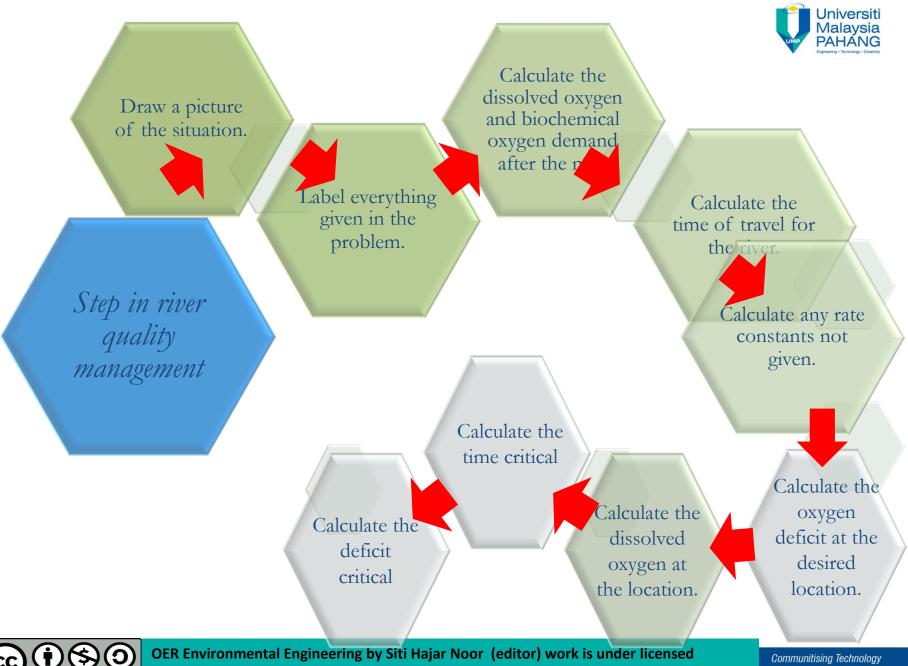
 L_o : initial ultimate BOD.

t: time of travel in the stream from the point of discharge

$$t = \frac{x}{u}$$

x: distance along the stream
u: stream velocity


The critical deficit


- The point of lowest concentration for represents the maximum impact on the dissolved oxygen due to wastewater discharge.
- Critical deficit, D_c

$$D_c = \frac{k_1}{k_2} L_o e^{-k_1 t_c}$$

• Critical time, t_c (time of travel to critical point):

$$t_c = \frac{1}{k_2 - k_1} \ln \left[\frac{k_2}{k_1} \left(1 - D_o \frac{k_2 - k_1}{k_1 L_0} \right) \right]$$

(cc)

Author Information

Credit to the author: Dr Norhanimah Hamidi

