

OIL & GAS TECHNOLOGY

Chapter 3 : Midstream Operations

by Siti Noraishah Ismail Faculty of Chemical & Natural Resources Engineering (FKKSA) snoraishah@ump.edu.my

Chapter Description

- Aims
 - This course introduces the concept of midstream activities
- Expected Outcomes
 - Describe the fundamental concept of gas processing and type gas treatments
 - Understand the gas and liquid pipeline and pipeline management
- References
 - Devold, H. Oil and Gas Production handbook: An Introduction to Oil and Gas Production, Transport, Refining and Petrochemical Industry, 2013.
 - J. Stell. North America's top gas processors consolidate in 2015. Retrieved from http://gasprocessingnews.com/features/201602/northamerica%E2%80%99s-top-gas-processors-consolidate-in-2015.aspx at 20th of January 2016.

Subtopic

3.1 Overview of O&G Value Chain

Source: https://www.flickr.com/photos/usgao/15340360702

3.1 Gathering

Flowlines

- Lines connecting wellpad and FGS
- Mobile type pig launcher (fixed or mobile type)

FGS (Field Gathering Station)

- System of pipelines gathering
 Permits transmission combined stream to CPF
 - •Measures oil:water:gas ratio

Trunkline

- Pipeline connecting FGS with CPF(Central Processing Facility)
- Has a pig receiver at the end

Source: https://commons.wikimedia.org/wiki/File:Tokyogas_Negishi_LNG_Tarminal.JPG

3.2 Gas Plants

• Further gas processing:

- Sweetening/acid removal

• Remove unwanted materials: acids, eg: H2S & CO2

Calibration

- To achieve certain specification
- Usually located @ common point
 - Eg: System of pipelines gathering and pipeline at onshore terminal

Natural gas composition from the well

Methane		Hea • Propa • Highe alkenes	Heavier HC Propane, Butane Higher order HC – alkenes & aromatics 		Acid gases H2S, CO2, mercaptans 	
	Other gases • N2, Helium		Other co • V • Trace	Other components • Water • Trace pollutants:		

Natural Gas Characterization

Natural Gas products/fractions

NG	Natural Gas
NGL	 Natural Gas Liquids
LPG	Liquefied Petroleum Gas
LNG	Liquefied Natural Gas
CNG	Compressed Natural Gas
	BY NC SA Midstream Operations by Siti Noraishal

5.3 Gas processing

<u>1. Acid gas removal</u>

- Remove acid gas, eg: CO_2 , H_2S
 - Acid gas + water→ acid Why? Prevent corrosion, some acids are toxic
- Principles:
 - Absorption Adsorption Cryogenic Removal Membrane Removal Sulfur Unit Tail Gas Treatment

2. Dehydration

- Glycol-based scrubbers
- Pressure-swing adsorption (PSA)
- Membrane based

3. Mercury removal

 Based on molecular sieves

5.3 Gas processing

4. Nitrogen rejection

- By cryogenic distillation; removes excess N2

5. NGL recovery and treatment

- By cryogenic turbo expander-based process
- Then, fractioning
- Lastly, mercaptans removal

Sales gas specifications

- Set by pipeline operators & distributors
- Parameters:
 - 1. Volume
 - 2. Calorific value
 - 3. Wobble Index
 - 4. Methane Number
 - 5. Hydrogen sulphide & Overall sulphur content
 - 6. Mercury
 - 7. Dew point
 - 8. Particles & Other Substance
 - 9. Additives

3.4 Pipeline

Midstream Operations by Siti Noraishah

Communitising Technology

(a) Pipeline terminal

- Transport gas/liquid at high pressure due to compressors or pumps
- Consists of;
 - ✓ driving compressors
 - ✓ pumps
 - ✓ valve stations
 - ✓ pig receive/launch facilities.

(b) Gas pipelines, compressor & valve stations

• The starting pressure must be high to maintain design capacity flow up to the final terminal.

(c)Liquid pipelines, pump & valve stations

- Have higher specific gravity, higher pressure drops uphill, and increases downhill.
- Additional pumping capacity uphill is required & depending on downhill capacity due to pressure reducing turbines (brakes station).

(d) Pipeline management, control & safety

- <u>Supervisory control</u> is to monitor the entire operation of pipeline system by using <u>pipeline modeling models</u>. The pressure, temperature and flow will be monitored.
- Demand forecasting is used to model demand in future (days) in relation with several parameters.
- across the system <u>Safety systems</u> are used to ensure that the system shut down in case of malfunctions and out-ofbounds conditions.

3.5 LNG

(a) LNG liquefaction

Cascade cycle

• Separate refrigerant cycles with propane, ethylene and methane (ConocoPhillips)

Mixed refrigerant cycle

- Single mixed refrigerant (SMR) (PRICO)
- Single mixed refrigerant (LIMUM[®]) (Linde)

• Propane pre-cooled mixed refrigerant: C3MR (sometimes referred to as APCI: Air Products & Chemicals, Inc.)

- Shell dual-mixed process (DMR) (Shell)
- Dual mixed refrigerant (Liquefin Axens)
 - Mixed fluid cascade process (MFCP) (Statoil/Linde)

Expander cycle

• Kryopak EXP[®] process

(a) LNG liquefaction

Communitising Technology

(b) Storage, transport & regasification

- At the receiving terminal, LNG is stored in local cryogenic tanks.
- It is regasified to ambient temperature on demand, commonly in a sea water heat exchanger, and then injected into the gas pipeline system.
- The tanks are insulated, but will not keep LNG cold enough to avoid evaporation.

3.5 Conclusion

- Pipeline management is important at midstream operation
- Acid gas removal is important to remove undesired components from raw natural gas.
- LNG process consists of pre-cooling, liquefy and subcooling process

THANK YOU

Authors Information

Credit to the authors: Siti Noraishah Ismail

