

BMM1523/BHA1113 ENGINEERING MATERIALS

ADVANCED MATERIALS

by Tedi Kurniawan Faculty of Mechanical Engineering tedikurniawan@ump.edu.my

Communitising Technology

Chapter Description

• Aims

Students are expected to have basic understanding types of advanced materials and its specific properties

Expected Outcomes

- identify the specific properties of biomaterials and smart materials
- Understand the principle of semiconductor and nanomaterials

References

1. William D. Callister and David G. Rethwisch. Materials science and enginnering: An Introduction, 9th Ed. Wiley, 2014.

What is Advanced Materials?

- Groups of Materials:
 - Metals
 - Ceramics
 - Polymer
 - Advanced Materials
- Their application is usually based on **mechanical** or **structural properties**.
 - Steel : Strong
 - Polymer : lightweight
 - Ceramics: hard and stiff

ADVANCED MATERIALS

All new materials and traditional materials (metals, ceramics or polymers) that newly developed to enhance its properties for hightechnology application (operates using sophisticated principles).

4 TYPES OF ADVACEND MATERIALS

- Smart materials
- Semiconductors
- Nanomaterials

BIOMATERIALS

- materials that implanted into human body for medical uses.
- to replace the function of tissue, organ or parts of human body.

Biocompatibility

The compatibility of a material with the human body to perform a specific application and without causing toxicity or immunological reaction.

Types of Biomaterials

- Metal-based biomaterials (Metallic biomaterials)
- Ceramic-based biomaterials (bioceramics)
- Polymer-based biomaterials (polymeric biomaterials)
- Composite-based biomaterials (biocomposite)

Strategies For Tissue and Organ Engineering

Source: <u>Community</u> <u>College Consortium</u> <u>for Bioscience</u> <u>Credentials</u>

HIP JOINT

Sources: <u>Hip Joint</u>, <u>Hip Joint (2)</u>

MECHANICAL HEART VALVE

Sources:

- <u>Z22</u>
- <u>http://www.nlm.nih.gov/medlinepl</u> <u>us/ency/imagepages/18093.htm</u>

SMART Materials

- Change shape when heat applied
- Produce electricity when stress applied
- Change in color when heat or electricity applied.
- ✓ React to a stimulus by its environment by its self
- ✓ Fast respond!
- ✓ Other than structural function, smart materials may functioning as sensor, actuator and microprocessor.

Type of stimulus:

Stress, temperature, magnetic, electric, etc.

Examples of Smart Materials

- □ Shape Memory Alloys
- Piezoelectric Materials
- Photochromic Materials
- □ Thermochromics Materials
- Electrochromic Materials

Transformation of Ni-Ti SMA wire: "plastically" deform then return back to original shape by heating

Smart window Source: <u>Vitswell</u>

Thermochromic mug Source: <u>Damianosullivan</u>

SEMICONDUCTORS

- Materials with electrical properties in between insulator and conductor and can be modify by the existence of impurities (dopant).
- Classified into P-type and N-type semiconductor
 - P-type: positively charged semiconductor; holes as majority carrier
 - N-type: negatively charged semiconductor; electrons as majority carrier.

Diode

Electronic devices that combine p-type and n-type regions of semiconductor, which create two-terminals and conduct current in one direction.

Sources: <u>Raffamaiden; Morcheeba</u>

NANOMATERIALS

NANOMATERIALS are materials with the dimension on the order of nanometer (less than 100 nm)

T. Kurniawan- Ad

BY

NC

SA

WE LIVE IN A NANO WORLD

Nanomaterials- defined as having one dimension below 100 nanometres - are all around us.

POSSIBLE DANGERS

THE HUMAN BODY USES NATURAL NANOMATERIALS, SUCH AS

PROTEINS, TO CONTROL MANY SYSTEMS AND PROCESSES.

LIVING ORGANISMS

A NANOMETRE HAS THE SAME RELATION TO A METRE AS THE DIAMETER OF A HAZELNUT HAS TO THE DIAMETER OF THE EARTH -

A FEW EXAMPLES OF THE MANY WAYS WE USE ENGINEERED NANOMATERIALS

SOLAR CELLS

QUANTUM DOTS CAN IMPROVE SOLAR CELL. EFFICIENCY AS THEY CAN BE "TUNED" TO ABSORB LIGHT ACROSS THE SOLAR SPECTRUM

SUN CREAM

ZINC OXIDE PARTICLES CAN HELP PROTECT. AGAINST UV RAYS BY REFLECTING IT AWAY FROM THE SKIN

CLOTHING

SILVER NANOPARTICLES CAN PROVIDE POWERFUL ANTIBACTERIAL PROPERTIES, WHILE SILICA PARTICLES CAN REPEL WATER. AND PREVENT STAINS.

BATTERIES

NANOPARTICLE-BASED ELECTRODES CAN IMPROVE THE LIFE-CYCLE OF RECHARGEABLE LITHIUM-ION BATTERIES

NANOSOLUTIONS

CANCER CELLS

GOLD NANOPARTICLES CAN DELIVER CHEMOTHERAPY DRUGS DIRECTLY TO

GASTROINTESTINAL TRACT

SKIN PORES

THE NEED FOR TESTING

RESPIRATORY SYSTEM

SAFE TO USE

Infographic on nanomaterials Source: InsightPublishers

Dr. Tedi Kurniawan

Affiliation:

Structural Materials and Degradation (SMD) Focus Group Faculty of Mechanical Engineering University Malaysia Pahang Pekan 26600 Pahang, Malaysia.

Research Interest:

High Temperature Physical Chemistry
Thin Films Technology
Metals and Alloys.

Contact:

Email: tedikurniawan@ump.edu.my

