

BMM1523/BHA1113 ENGINEERING MATERIALS

CERAMICS

by Tedi Kurniawan Faculty of Mechanical Engineering tedikurniawan@ump.edu.my

Chapter Description

• Aims

To understand the properties of different types ceramic materials.

Expected Outcomes

- Student able to classify the types of ceramic materials.
- Student able to describe the different properties of traditional and advanced ceramic materials.

References

1. William D. Callister and David G. Rethwisch. Materials science and enginnering: An Introduction, 9th Ed. Wiley, 2014.

Introduction of ceramic

Definition: Inorganic, nonmetallic materials that consist of metallic and nonmetallic elements bonded together primarily by ionic and/ or covalent bonds.

Properties and characteristic:

- Hard and brittle with low toughness and ductility.
- Usually good electrical and thermal insulators
- High melting temperatures and high

Traditional ceramic

Feldspar (Fluxing agent)

- Bond the refractory component
- Makes a glass when the ceramic mix was fired

Clay

- Constitute the major body material
- provides workability of the material before firing hardens it

Silica/Filler

• Refractory component

Traditional Ceramic

BY

NC

SA

Glass is noncrystalline (amorphous)

- Fused silica is SiO₂ to which no impurities have been added
- Other common glasses contain impurity ions such as Na⁺, Ca²⁺, Al³⁺, and B³

Properties of Glass

CC

BY

NC

SA

Type of Glass

Type of glasses

Composition

Advantages and disadvantages

Fused silica glass, vitreous silica glass	100% Silica	•	low thermal expansion, hard and resist high temperature resist against weathering
Soda-lime-silica, window glass	silica 72% + sodium oxide (Na ₂ O) 14.2% + magnesia (MgO) 2.5% + lime (CaO) 10.0% + alumina (Al ₂ O ₃) 0.6%.	•	transparent, easily formed has a high thermal expansion and poor resistance to heat
Sodium borosilicate glass (Pyrex)	silica 81% + boric oxide (B_2O_3) 12% + soda (Na_2O) 4.5% + alumina (Al_2O_3) 2.0%.	•	Stands heat expansion much better than window glass. low coefficients of thermal expansion
Lead-oxide glass, crystal glass	silica 59% + soda (Na ₂ O) 2.0% + lead oxide (PbO) 25% + potassium oxide (K ₂ O) 12% + alumina 0.4% + zinc oxide (ZnO) 1.5%.	•	high refractive index. cannot stand heating very well
Aluminosilicate	20% aluminium oxide (alumina-Al ₂ O ₃)	•	able to withstand high temperatures and thermal shock
Oxide glass	alumina 90% + germanium oxide (GeO ₂) 10%.	•	Extremely clear glass

T. Kurniawan – Ceramic Material

Ceramic Fabrication Methods

Glass forming

- Pressing
- Blowing
- Drawing
- Fiber forming

Particulate forming

- Powder pressing: Hot; Uniaxial; Isostatic
- Hydro plastic forming
- Slip casting
- Tape casting

Cementation

T. Kurniawan – Ceramic Materials

Glass forming: Blow and blow method

Particulate forming (Slip casting)

Preparing slurry

T. Kurniawan – Ceramic Materials

Dr. Tedi Kurniawan

Affiliation:

Structural Materials and Degradation (SMD) Focus Group Faculty of Mechanical Engineering University Malaysia Pahang Pekan 26600 Pahang, Malaysia.

Research Interest:

High Temperature Physical Chemistry
Thin Films Technology
Metals and Alloys.

Contact:

Email: tedikurniawan@ump.edu.my

Dr. Januar P. Siregar

Affiliation:

Structural Materials and Degradation (SMD) Focus Group Faculty of Mechanical Engineering University Malaysia Pahang Pekan 26600 Pahang, Malaysia.

Research Interest:

Natural-fiber compositesPolymer based materials.

Contact:

Email: januar@ump.edu.my