THEORY OF STRUCTURES CHAPTER 5 : THREE PIN ARCH

by

Saffuan Wan Ahmad Faculty of Civil Engineering \& Earth Resources saffuan@ump.edu.my

Chapter 5 - Three Pin Arch

- Aims
- Determine internal forces, shear forces and bending moments in arch member
- Expected Outcomes:
- Able to explain the function of arch
- Able to describe the function of arch
- Able to determine the reaction at support for three arch structure
- Able to determine the internal forces at any point at arch structure
- Able to draw shear force, axial force and bending moment diagram
- References
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley

by Saffuan Wan Ahmad

5.1 WHAT IS ARCH??

Traffic deck

Fixed arch bridge
Arch rib

Tie (traffic deck)
Tied arch bridge

- Arches have been used for a very long time to span large distance i.e bridges/building to carry transverse loading efficiently.
- Arch carries most of the load axially with bending moment greatly reduced due to the curvature of the arch

5.3 TYPES OF ARCH

\#Due to support system

5.4 EQUATION OF PARABOLIC ARCH

The axial force, N shear force, Q and bending moment, M in the arch rib

- Shear force must be parallel to the cross section surface, whilst the axial force must be perpendicular to the shear force. The positive were shown in figure below.

Left hand side

Right hand side

$y=k x(L-x)$
..........Parabolic equation
When $x=L / 2, y=y c$ sub into enq.
$\mathrm{yc}=\mathrm{k}(\mathrm{L} / 2)(\mathrm{L}-\mathrm{L} / 2)=\mathrm{kL} / 4$
Therefore $k=4 y c / L^{2}=4 h / L^{2} \quad$ then sub into eqn.

$$
y=\left(4 y c / L^{2}\right)\left(L x-x^{2}\right)
$$

$$
y=\left(4 h / L^{2}\right)\left(L x-x^{2}\right) \quad \text { simplify } \quad y=\left(4 h / L^{2}\right) x(L-x)
$$

At any point of the arch (parabolic)

EXAMPLE 1

- Calculate the reaction at support A and B as shown in figure below.

Solution

 Example 1...Draw FBD

Consider the whole structure
$\sum M_{A}=0$
$130(5)+140(10)+150(15)-V_{B}(40)=0$
$V_{B}=107.5 \mathrm{kN}$
$\sum F_{y}=0$
$V_{A}=312.5 \mathrm{kN}$
$V_{A}-130-140-150+107.5=0$
$V_{A}=312.5 \mathrm{kN}$
@®®®

Solution
Example 1...
Now, consider segment CB

$$
\begin{aligned}
& \sum M_{C}=0 \\
& 107.5(20)+H_{B}(8)=0 \\
& H_{B}=268.75 \mathrm{kN}
\end{aligned}
$$

Hence, $H_{A}=268.75 \mathrm{kN}$

EXAMPLE 2

- Determine the internal forces at the points D and E in the three hinge parabolic arch as shown in figure below.
$\downarrow \stackrel{16 \mathrm{kN} / \mathrm{m}}{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow}$

Solution

Example 2...
Apply equation of equilibrium, consider the whole structure then taking moment about A and B .

$$
V_{A}=60 \mathrm{kN}, \quad V_{B}=20 \mathrm{kN}
$$

Consider RHS or LHS, take moment about C is equal

$$
H=40 k N
$$

- Consider segment CD

$$
\begin{aligned}
& \begin{aligned}
y_{D} & = \\
& \frac{4 h x}{L^{2}}(L-x) \\
& =\frac{4(2.5)(2.5)}{10^{2}}(10-2.5) \\
& =1.875 m
\end{aligned} \\
& \text { Slope }= \frac{4 h}{L^{2}}(L-2 x) \\
&=\frac{4(2.5)}{10^{2}}(10-2(2.5)) \\
&=0.5
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}(0.5) \\
& =26.57^{\circ}
\end{aligned}
$$

Resolving in Q direction

$$
\begin{aligned}
& Q+40 \sin (26.57)-60 \cos (26.57)+40 \cos (26.57)=0 \\
& Q=-0.003 k N
\end{aligned}
$$

- Consider segment CD

$$
\begin{aligned}
& \begin{aligned}
y_{D} & = \\
& \frac{4 h x}{L^{2}}(L-x) \\
& =\frac{4(2.5)(2.5)}{10^{2}}(10-2.5) \\
& =1.875 m
\end{aligned} \\
& \text { Slope }=\frac{4 h}{L^{2}}(L-2 x) \\
&=\frac{4(2.5)}{10^{2}}(10-2(2.5)) \\
&=0.5
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}(0.5) \\
& =26.57^{\circ}
\end{aligned}
$$

Resolving in N direction

$$
\begin{aligned}
& N-40 \cos (26.57)-60 \sin (26.57)+40 \sin (26.57)=0 \\
& N=44.72 k N
\end{aligned}
$$

- Consider segment CD

$\theta=\tan ^{-1}(0.5)$
$=26.57^{\circ}$
Bending moment
$\sum \mathrm{M}_{\mathrm{D}}=0$
$-M_{D}-40\left(\frac{2.5}{2}\right)+60(2.5)-40(1.875)=0$
$\stackrel{{ }^{M} M_{\theta}}{ }$

EXAMPLE 3

- Determine the bending moment at 25 m from the right hand support B and axial and shear force at point D and E .

Solution

Example 3...

- Calculate Y_{E}

$$
\begin{aligned}
y_{E} & =\frac{4(15)(10)}{60^{2}}(60-10) \\
& =8.33 \mathrm{~m}
\end{aligned}
$$

- Consider whole structure

$$
\begin{aligned}
& \sum M_{A}=0 \\
& -V_{B}(60)+8(10)+10(20)(10+20)-5(8.33)=0 \\
& V_{B}=100.64 k N \\
& \sum F_{y}=0 \\
& V_{A}+100.64-8-10(20)=0 \\
& V_{A}=107.36 k N
\end{aligned}
$$

- Consider RHS of the arch, taking moment at C is equal to zero.

$$
100.64 \mathrm{kN}
$$

$$
-100.64(30)+10(10)(5)+5(15-8.33)+H_{B}(15)=0
$$

$$
\sum F_{x}=0
$$

$$
H_{A}-165.72-5=0
$$

$H_{A}-165.72-5=0$

$$
\begin{aligned}
& \sum M_{C}=0 \\
& -100.64(30)+1 \\
& H_{B}=165.72 k N
\end{aligned}
$$

- Calculate the bending moment at 25 m from support , say point F

$$
\begin{aligned}
& \sum M_{F}=0 \\
& M_{F}-100.64(25)+165.72(14.58) \\
& \quad+5(14.58-8.33)+10(5)(2.5)=0 \\
& M_{F}=-56.45 \mathrm{kNm}
\end{aligned}
$$

- At point D (with point load)

Resolving in Q direction
$Q+170.72 \sin (33.67)-107.36 \cos (33.67)$
$+8 \cos (33.67)=0$
$Q=-12.03 \mathrm{kN}$

Resolving in N direction
$N-170.72 \cos (33.67)-107.36 \sin (33.67)$
$+8 \sin (33.67)=0$
$N=197.16 k N$

- At point F (with point load)

Resolving in Q direction

$$
\begin{aligned}
& Q+100.64 \cos (33.67)-165.72 \sin (33.67) \\
& \quad-5 \sin (33.67)=0 \\
& Q=10.96 k N
\end{aligned}
$$

Resolving in N direction

$$
\begin{aligned}
& N-100.64 \sin (33.67)-165.72 \cos (33.67) \\
& \quad-5 \cos (33.67)=0 \\
& N=197.87 k N
\end{aligned}
$$

EXAMPLE 4

Determine the reactions at supports and bending moment under the load :

Solution

Example 4...

$$
\begin{aligned}
& \frac{l_{1}}{l_{2}}=\sqrt{\frac{r_{1}}{r_{2}}} \\
& \frac{20}{40}=\sqrt{\frac{r_{1}}{16}}
\end{aligned}
$$

$$
\therefore r_{1}=4 m
$$

$$
y_{A}=16-4=12 m
$$

Or...

$$
\begin{aligned}
& y_{A}=\frac{4 h x}{L^{2}}(L-x) \\
& y_{A}=\frac{4(16)(10)}{40^{2}}(40-10) \\
& y_{A}=12 m
\end{aligned}
$$

- Consider the whole structure. Taking moment at A is equal zero

$$
\begin{align*}
& \sum M_{A}=0 \\
& 80(5)+100(20)-V_{B}(30)+H_{B}(12)=0 \\
& 30 V_{B}-12 H_{B}=2400 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

- Consider RHS, taking moment at C is equal to zero
$\sum M_{C}=0$
$100(10)-V_{B}(20)+H_{B}(16)=0$
$20 V_{B}-16 H_{B}=1000$
- Resolving by using calculator

$$
\begin{aligned}
& V_{B}=110 \mathrm{kN} \\
& H_{B}=75 \mathrm{kN}
\end{aligned}
$$

- Apply static equation

$$
\begin{aligned}
& \sum F_{y}=0 \\
& V_{A}+110-80-100=0 \\
& V_{A}=70 \mathrm{kN} \\
& \sum F_{x}=0 \\
& H_{A}=H_{B}=75 \mathrm{kN}
\end{aligned}
$$

- Consider LHS, taking moment under load 80kN

$$
\begin{aligned}
y_{80} & =\frac{4 h x}{L^{2}}(L-x) \\
& =\frac{4(16)(15)}{40^{2}}(40-15) \\
& =15 m \\
y_{80}^{\prime} & =15-12=3 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{80}=0 \\
& -M_{80}+70(5)-75(3)=0 \\
& M_{80}=125 \mathrm{kNm}
\end{aligned}
$$

- Consider RHS, taking moment under load 100 kN

$$
\begin{aligned}
y_{100} & =\frac{4 h x}{L^{2}}(L-x) \\
& =\frac{4(16)(10)}{40^{2}}(40-10) \\
& =12 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{100}=0 \\
& M_{100}+75(12)-110(10)=0 \\
& M_{100}=200 \mathrm{kNm}
\end{aligned}
$$

THANKS

by Saffuan Wan Ahmad

Author Information

Mohd Arif Bin Sulaiman
Mohd Faizal Bin Md. Jaafar
Mohammad Amirulkhairi Bin Zubir
Rokiah Binti Othman
Norhaiza Binti Ghazali
Shariza Binti Mat Aris

