Fluid Mechanics

Assignment I

by
Dr. Nor Azlina binti Alias
Faculty of Civil and Earth Resources Engineering azlina@ump.edu.my

Assignment I

Ques. No	CO	COURSE OBJECTIVES	TOTAL MARKS
$1-2$	CO1	Define fluid properties and the fundamentals of fluid mechanics concept	40
$3-4$	CO2	Explain fluid mechanics system and devices such as capillary, manometers, and piezometer	40
5	CO3	Apply fluid mechanics theories such as Bernoulli's theorem, continuity equation, Darcy- Weisbach equation and Reynold's number in fluid mechanics system.	20
(TOTAL	100	

Assignment I

- Question 1
- Solid, liquid and gas are three states of matter of fluid. List FOUR (4) differences between liquid and gas.
- Question 2
- A liquid has a volume of 4300 L and weighs 24 kN . By assuming missing data suitably, compute:
- Specific weight, γ
- Mass density, ρ
- Specific volume, V_{s}
- Specific gravity, $S g$

Assignment I

- Question 3
- Pressure gauge B is to measure the pressure at point A in a water flow. If the pressure at B reads 60 kPa , estimate the pressure at point A in kPa . Assume all fluids are at $20^{\circ} \mathrm{C}$. See figure below.

Assignment I

- Question 4
- Water is flowing through a venturi meter whose diameter is 8 cm at the entrance part and 3 cm at the throat. The pressures measured at the entrance and the throat are 320 kPa and 120 kPa respectively. Determine the flow rate of water.
- Clue : neglect the frictional factor.

Assignment I

- Question 5
- Figure shows a piping system that involves a 28 m length and 8 cm diameter pipe. Water flows from the tanker into the reservoir at a rate of 5.0×10^{-3} $\mathrm{m}^{3} / \mathrm{s}$. Both tanker and reservoir are exposed to the atmosphere as illustrated in the figure. Given the properties of piping system are as follows:
- Well-rounded entrance, $K_{L}=0.0^{3}$
- Sharp-edged exit, $K_{L}=1.0$
- Density of water $\rho,=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Dynamic viscosity of water, $\mu=0.001 \mathrm{~kg} / \mathrm{ms}$
- Roughness of cast iron pipe, $\varepsilon=0.00026 \mathrm{~m}$.
- Compute the free surface elevation of the source above the reservoir (z). Take the free surface of the reservoir as reference level $\left(z_{R}\right)$.

