For updated version, please click on http://ocw.ump.edu.my

Fluid Mechanics

Assignment I

by Dr. Nor Azlina binti Alias Faculty of Civil and Earth Resources Engineering azlina@ump.edu.my

Assignment I by Nor A Alias

Ques. No	СО	COURSE OBJECTIVES	TOTAL MARKS
1 – 2	CO1	Define fluid properties and the fundamentals of fluid mechanics concept	40
3 – 4	CO2	Explain fluid mechanics system and devices such as capillary, manometers, and piezometer	40
5	CO3	Apply fluid mechanics theories such as Bernoulli's theorem , continuity equation, Darcy- Weisbach equation and Reynold's number in fluid mechanics system.	20
TOTAL			100

- Question 1
 - Solid, liquid and gas are three states of matter of fluid. List FOUR (4) differences between liquid and gas.
- Question 2
 - A liquid has a volume of 4300 L and weighs 24 kN. By assuming missing data suitably, compute:
 - Specific weight, γ
 - Mass density, ρ
 - Specific volume, V_s
 - Specific gravity, Sg

- Question 3
 - Pressure gauge B is to measure the pressure at point A in a water flow. If the pressure at B reads 60 kPa, estimate the pressure at point A in kPa. Assume all fluids are at 20°C. See figure below.

- Question 4
 - Water is flowing through a venturi meter whose diameter is 8 cm at the entrance part and 3 cm at the throat. The pressures measured at the entrance and the throat are 320 kPa and 120 kPa respectively. Determine the flow rate of water.
 - Clue : neglect the frictional factor.

- Question 5
 - Figure shows a piping system that involves a 28 m length and 8 cm diameter pipe. Water flows from the tanker into the reservoir at a rate of 5.0 x 10⁻³ m³/s. Both tanker and reservoir are exposed to the atmosphere as illustrated in the figure. Given the properties of piping system are as follows:
 - Well-rounded entrance, $K_L = 0.0^3$
 - Sharp-edged exit, $K_L = 1.0$
 - Density of water ρ, = 1000 kg/m³
 - Dynamic viscosity of water, $\mu = 0.001 \text{ kg/ms}$
 - Roughness of cast iron pipe, $\varepsilon = 0.00026$ m.
 - Compute the free surface elevation of the source above the reservoir (z). Take the free surface of the reservoir as reference level (z_R).

Assignment I by Nor A Alias