5.2 Laminar Flow in Pipes

- Friction loss of laminar flow (in circular pipe)
- If the two relationships for hL are set equal to each other, we can solve for the value of the friction factor:
- The Hagen-Poiseuille and Darcy-Weisbach equations gives :

$$\frac{32\mu Lv}{\gamma D^2} = \frac{fLv^2}{2gD}$$

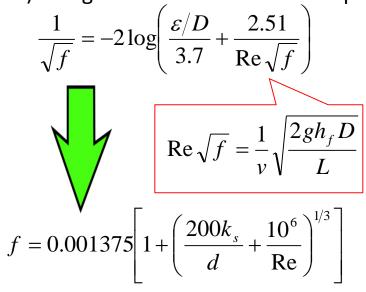
$$f = \frac{32\mu Lv}{\gamma D^2} \times \frac{2gD}{Lv^2} = \frac{64\mu g}{\gamma v D}$$

$$f = \frac{64\mu g}{\gamma v D}$$

$$\rho = \frac{\gamma}{g}$$

$$Re = \frac{\rho v D}{\mu}$$

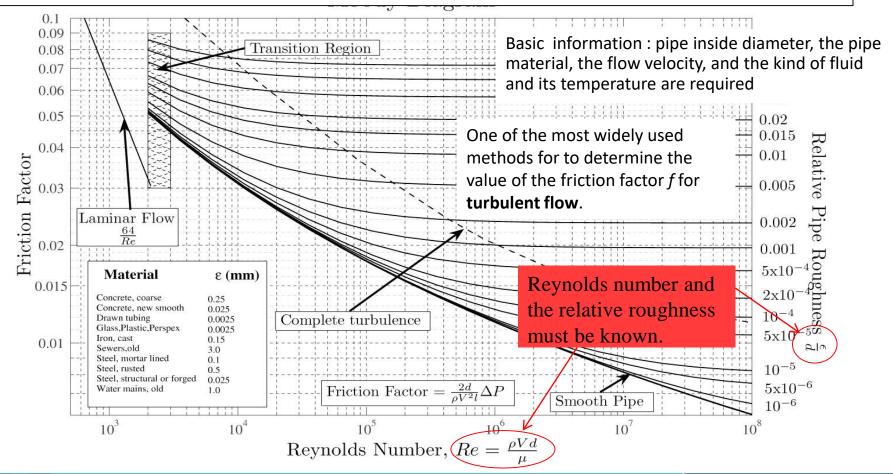
$$f = \frac{64}{Re}$$


5.3 Turbulent Flow in Pipes

- Friction loss in turbulent flow :
 - For turbulent flow of fluids in circular pipes it is most convenient to use Darcy's equation to calculate the energy loss due to friction.
 - Turbulent flow is rather chaotic and is constantly varying.
 - For these reasons we must rely on experimental data to determine the value of *f*.
 - For commercially available pipe and tubing, the design value of the average wall roughness has been determined as shown in Table.
 - These are only average values for new, clean pipe. Some variation should be expected. After a pipe has been in service for a time, the roughness could change due to the formation of deposits on the wall or due to corrosion.

5.3.1 Turbulent Flow in Pipes

- Friction loss in turbulent flow :
- There are two methods to determine the friction factor f for turbulent flow.
 i) Using the Colebrook White equation

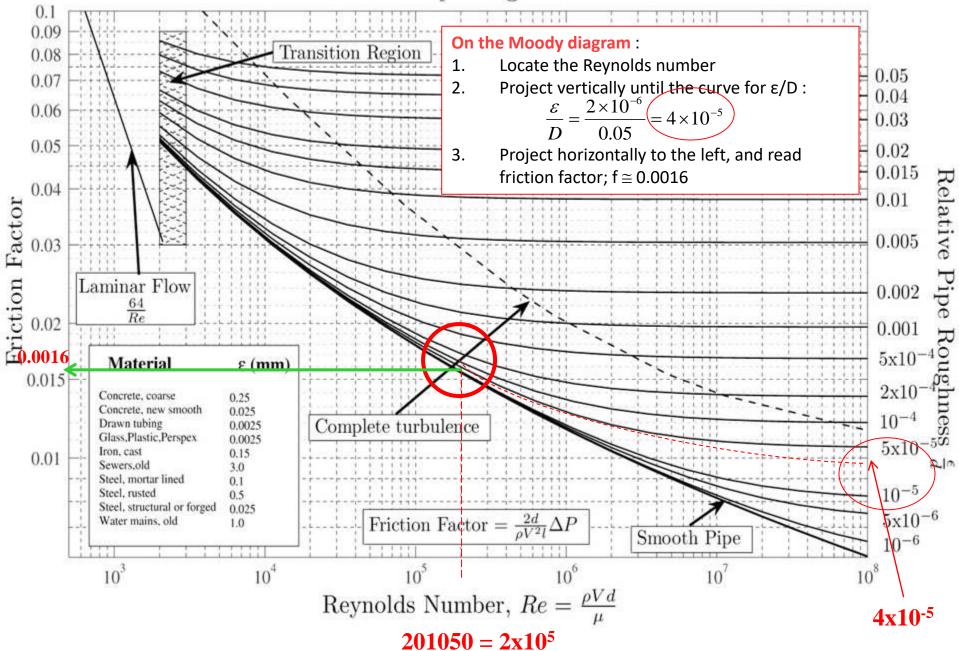


ii) Moody Diagram

Pipe material	Pipe roughness $arepsilon$ (mm)
Brass, copper, glass	0.003
Asbestos cement	0.03
Wrought iron	0.06
Galvanised iron	0.15
Plastic	0.03
Bitumen-linen iron	0.03
Spun concrete line ductile iron	0.03
Slimed concrete sewe	6.0

Moody's Diagram

The **Moody diagram** which describes the **Darcy-Weisbach friction factor**, *f* as a function of the **Reynolds number** and relative pipe roughness.



Friction loss in turbulent flow

Material	Roughness e (m)	Roughness e (ft)
Glass Plastic	Smooth $3.0 imes10^{-7}$	Smooth 1.0×10^{-6}
Drawn tubing; copper, brass, steel	$1.5 imes10^{-6}$	$5.0 imes10^{-6}$
Steel, commercial or welded Galvanized iron	$4.6 imes10^{-5}\ 1.5 imes10^{-4}$	$1.5 imes 10^{-4}\ 5.0 imes 10^{-4}$
Ductile iron—coated	$1.2 imes10^{-4}$	$4.0 imes 10^{-4}$
Ductile iron—uncoated	$2.4 imes10^{-4}$	$8.0 imes 10^{-4}$
Concrete, well made	$1.2 imes10^{-4}$	$4.0 imes 10^{-4}$
Riveted steel	$1.8 imes10^{-3}$	$6.0 imes10^{-3}$

Moody Diagram

