4.1 Derivation of Momentum Equation

- In mechanics, the momentum of a particle is defined as the product of its mass m and its velocity, v.

$$
\text { Momentum }=m v
$$

- The particles of a fluid stream will possess momentum. In fluid motion, whenever there is change in magnitude and direction of velocity, there will be a corresponding change in momentum. The rate of momentum is given by: Rate of Momentum $=\rho Q v$
- The rate of momentum for steady flow; $\left(\rho_{2} A_{2} v_{2}\right) v_{2}-\left(\rho_{1} A_{1} v_{1}\right) v_{1}$ or from the continuity of mass flow equation,

Change of momentum
$\rho_{1} A_{1} v_{1}\left(v_{2}-v_{1}\right)=\dot{m}\left(v_{2}-v_{1}\right)=$ mass flow per unit time \times change of velocity

- If $\rho_{2}=\rho_{\text {land }}$ according to continuity principle and the Newton Second Law; the rate of change between section 1 and 2 is :

$$
\rho Q\left(v_{2}-v_{1}\right)=F
$$

- This is the resultant force acting on the control volume in the direction of motion. For any control volume, the total force F which acts upon it in a given direction will be made up of three component forces that are :
- F_{1} : forces exerted in the given direction on the fluid by solid body
- F_{2} : forces exerted in a given direction on the fluid by body forces such as gravity
- F_{3} : forces exerted in the given direction on the fluid outside the control volume.

$$
F_{R}=\rho Q\left(v_{\text {out }}-v_{\text {in }}\right)
$$

- The force exerted by the fluid on the solid body will be equal and opposite to F_{1}, so that the $R=-F_{1}$

Momentum equation for flow in a streamtube

- Momentum is the quantity of motion of a moving body measured as a product of its mass and velocity.
- Rate of change in momentum of fluid in x direction :

$$
\begin{aligned}
& F_{x}=\rho Q\left(v_{\text {out }}-v_{\text {in }}\right) \\
& F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
& F_{x}=\rho Q\left(v_{2} \cos \theta_{2}-v_{1}\right)
\end{aligned}
$$

- Similarly in y direction :

$$
\begin{aligned}
& F_{y}=\rho Q\left(v_{\text {out }}-v_{\text {in }}\right) \\
& F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right) \\
& F_{y}=\rho Q\left(v_{2} \sin \theta_{2}-v_{1} \sin \theta_{1}\right)
\end{aligned}
$$

- Resultant force, $\left.F_{R}=\sqrt{\left(F_{x}^{2}+F_{y}{ }^{2}\right.}\right)$ Direction:
- Force acting on the fluid will be :

Force $=$ rate of change of momentum

$$
F=\rho Q(\Delta v)
$$

1. $\quad F_{1}$, force exerted by the walls of the pipe
2. $\quad F_{3}$, force due to the pressure P_{1} and P_{2} of the fluid outside the control volume.

- The force exerted by the fluid on the bend is opposite to the resultant force, so the
Force acting on
the fluid is $F_{1}+F_{3}$

- The rate of change of momentum :

$$
F_{1}+F_{3}=\rho Q\left(v_{\text {out }}-v_{\text {in }}\right)
$$

- Resolving in x direction,
$F_{1 x}+F_{3 x}=\rho Q\left(v_{2 x}-v_{1 x}\right)$
$-R_{x}+F_{3 x}=\rho Q\left(v_{2 x}-v_{1 x}\right)$
$R_{x}=F_{3 x}-\rho Q\left(v_{2 x}-v_{1 x}\right)$
$R_{x}=F_{3 x}-\rho Q\left(v_{2} \cos \theta-v_{1}\right)$
$R_{x}=\left[P_{1} A_{1}-P_{2} A_{2} \cos \theta\right]-\rho Q\left(v_{2} \cos \theta-v_{1}\right)$
- Resultant force: $F_{R}=\sqrt{\left(F_{x}{ }^{2}+F_{y}{ }^{2}\right)}$ Direction:

Resolving in y direction,
$F_{1 y}+F_{3 y}=\rho Q\left(v_{2 y}-v_{1 y}\right)$
$-R_{y}+F_{3 y}=\rho Q\left(v_{2 y}-v_{1 y}\right)$
$R_{y}=F_{3 y}-\rho Q\left(v_{2 y}-v_{1 y}\right)$
$R_{y}=\left[P_{1} A_{1}-\left(-P_{2} A_{2} \sin \theta\right)\right]-\rho Q\left(-v_{2} \cos \theta-0\right)$
$R_{y}=\left[P_{2} A_{2} \sin \theta\right]+\rho Q\left(v_{2} \cos \theta\right)$

$$
F_{R}=\sqrt{\left(F_{x}^{2}+F_{y}^{2}\right)}
$$

$$
\theta=\tan ^{-1}\left(\frac{F_{R y}}{F_{R x}}\right)
$$

Step in Analysis with Momentum Equation

1. Draw a control volume : Based on the problem, selecting the stream between two gradually varied flow sections as the control volume;
2. Decide on co-ordinate axis system : Determining the directions of co-ordinate axis, magnitudes and directions of components of all forces and velocities on each axis.
3. Plotting diagram for computation : Analyzing the forces on control volume and plotting the directions of all forces on the control volume.
4. Writing momentum equation and solving it (total force and pressure force) : Substituting components of all forces and velocities on axes into momentum equation and solving it. All the pressures are relative to the relative pressure.

Momentum equation for flow in a streamtube

- At the inlet the velocity vector, v_{1}, makes an angle, θ_{1}, with the x-axis, while at the outlet v_{2} make an angle θ_{2}

Force in the x-direction, Fx	Force in the y-direction, F_{y}
$F_{x}=\rho Q\left(v_{\text {out }}-v_{\text {in }}\right)$	$F_{y}=\rho Q\left(v_{\text {out }}-v_{\text {in }}\right)$
$F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)$	$F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)$
$F_{x}=\rho Q\left(v_{2} \cos \theta_{2}-v_{1} \cos \theta_{1}\right)$	$F_{y}=\rho Q\left(v_{2} \sin \theta_{2}-v_{1} \sin \theta_{1}\right)$

the angle which this force acts at is given by : ${ }_{\phi=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)}$

