4.1 Derivation of Momentum Equation

- In mechanics, the momentum of a particle is defined as the product of its mass *m* and its velocity, *v*.
 Momentum = mv
- The particles of a fluid stream will possess momentum. In fluid motion, whenever there is change in magnitude and direction of velocity, there will be a corresponding change in momentum. The rate of momentum is given by: Rate of Momentum = ρQv
- The rate of momentum for steady flow; $(\rho_2 A_2 v_2)v_2 (\rho_1 A_1 v_1)v_1$ or from the continuity of mass flow equation,

• If $\rho_2 = \rho_1$ and according to continuity principle and the Newton Second Law; the rate of change between section 1 and 2 is :

$$\rho Q(v_2 - v_1) = F$$

- This is the resultant force acting on the control volume in the direction of motion. For any control volume, the total force F which acts upon it in a given direction will
 - F₁ : forces exerted in the given direction on the fluid by solid body

be made up of three component forces that are :

- F_2 : forces exerted in a given direction on the fluid by body forces such as gravity
- F₃ : forces exerted in the given direction on the fluid outside the control volume.

The force exerted by the fluid on the solid body will be equal and opposite to F₁, so that the R = -F₁

Momentum equation for flow in a streamtube

- Momentum is the quantity of motion of a moving body measured as a product of its mass and velocity.
 Force = rate of change
- Rate of change in momentum of fluid in x direction :

 $F_{x} = \rho Q(v_{out} - v_{in})$ $F_{x} = \rho Q(v_{2x} - v_{1x})$ $F_{x} = \rho Q(v_{2} \cos \theta_{2} - v_{1})$

Similarly in y direction :

$$F_{y} = \rho Q(v_{out} - v_{in})$$

$$F_{y} = \rho Q(v_{2y} - v_{1y})$$

$$F_{y} = \rho Q(v_{2} \sin \theta_{2} - v_{1} \sin \theta_{2})$$

• Resultant force, $F_R = \sqrt{\left(F_x^2 + F_y^2\right)}$

Direction: $\theta = \tan^{-1} \left(\frac{F_{Ry}}{F_{Rx}} \right)$

 R_{1x}

OF FLOW

SECTION

P₁

 $v_1 d_1 A_1$

- Force acting on the fluid will be :
- 1. F_1 , force exerted by the walls of the pipe
- 2. F_3 , force due to the pressure P_1 and P_2 of the fluid outside the control volume.

of momentum

 $F = \rho Q(\Delta v)$

F_{1X}

The force exerted by the fluid on the bend is opposite to the resultant force, so the

Step in Analysis with Momentum Equation

- **1. Draw a control volume** : Based on the problem, selecting the stream between two gradually varied flow sections as the control volume;
- 2. Decide on co-ordinate axis system : Determining the directions of co-ordinate axis, magnitudes and directions of components of all forces and velocities on each axis.
- **3. Plotting diagram for computation** : Analyzing the forces on control volume and plotting the directions of all forces on the control volume.
- 4. Writing momentum equation and solving it (total force and pressure force) : Substituting components of all forces and velocities on axes into momentum equation and solving it. All the pressures are relative to the relative pressure.

Momentum equation for flow in a streamtube

• At the inlet the velocity vector, v_1 , makes an angle, θ_1 , with the x-axis, while at the outlet v_2 make an angle θ_2

COSO Momentum and It's Application by Nor A Alias