

MECHANICS OF MATERIALS

Buckling of Columns

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources

Buckling of Columns by Nur F Ariffin

Communitising Technology

Chapter Description

- Expected Outcomes
 - Describe the concept of columns in term of types of column, crosssectional of shapes, industry standard application and slenderness ratio of column
 - Illustrate, explain and differentiate the failure mode of columns due to buckling
 - > Explain the influence of support conditions
 - Relationship between the effective length and radius of gyration
 - Describe the compression member of long / slender column
 - Applied of the Euler formula to determine the critical load for long columns

9.1 Concept Of Stability Of Column

- A **column** in structural engineering is a vertical structural element that transmits, through compression, the weight of the structure above to other structural elements below.
- For the purpose of wind or earthquake engineering, **columns** may be designed to resist lateral forces.
- **Columns** are frequently used to support beams or arches on which the upper parts of walls or ceilings rest.
- A column is a relatively long, slender member loaded in compression.

- When a perfect column is subjected to a **compressive** axial force, the only deformation that takes place is a **shortening** of the column.
- For **low** values of F, if the column were to be deflected laterally by a force perpendicular to the column, and the lateral force were thereafter removed, the column would **return to its straight position**, even with the force F remaining in place.
- This indicates a condition of **stability**.
- If the load F were increased, there is a value of F for which, when the lateral load is removed, the column would remain in the deformed shape.
- This condition is referred to as buckling and the column is said to have failed from a structural standpoint.
- Buckling can also be described in simple terms as bending or bowing of a column due to a compressive load.

Slenderness Ratio

Slenderness ratio is a measure of how long the column is compared to its cross-section's effective width (resistance to bending or buckling). The **slenderness ratio** is the column's **effective length** divided by the **radius of gyration**.

$$s = \frac{L}{r}$$

Where $r = \sqrt{I/A}$

9.2 Failure Mode Of Column

What is Buckling?

- When a slender member is subjected to an axial compressive load, it may fail by a condition called buckling.
- Buckling is not a failure of the material itself (as is yielding and fracture), but is due to geometric instability of the system.
- Note that buckling is not dependent on material strength.

Effective Length

 How a column is supported governs its buckling strength. The effective length L_e accounts for differences in the end supports.

What is the effective length?

- The effective length is the length the column would be if it were to buckle as a pinned-pinned column.
- A dimensionless coefficient K, effective-length factor, is used to calculate L_e

9.3 Effective Lengths for Columns with Various End Conditions				
End Condition	Pinned-Pinned	Fixed-Free	Fixed-Fixed	Fixed-Pinned
The effective length is equal to the distance between points in the column where moment = 0 (between "pins"). This occurs when the curvature of the column changes. The fixed-free column is "mirrored" through the fixed end to visualize L _e =2L.	Le=L			
Effective Length, L _e	L	2L	0.5L	0.7L
Relative Buckling Strength (~ 1/ L _e ²) for same L	1	0.25	4	2

Radius Of Gyration

- If all of the cross-sectional area A were massed a distance r away from the bending axis, the idealized lumped-area cross-section would have the same moment of inertia I as the actual cross-section if:
 - $I = Ar^2$
- Distance **r** is the **radius of gyration**. There generally two bending axes to consider, and thus two radius of gyration:

$$r_x = \sqrt{\frac{I_{xx}}{A}}; \quad r_y = \sqrt{\frac{I_{yy}}{A}}$$

9.4 Magnitude Of The Load At Which Buckling Would Occur

- Columns are long slender members subjected to an axial compressive force. Lateral deflection on a column is called buckling. The maximum axial load that a column can support when it is on the verge of buckling is called the critical load P_{cr}
- FOS is a safety margin given in design so that the member will not fail when the load is increased beyond the elastic limit or when the size in reduced.
- Normally, the factors of safety varies between 1.4 to 3

USE OF THE EULER FORMULA

- Euler Buckling Formula
- Both ends are pinned so they can freely rotate and cannot resist a moment. The critical load P_{cr} required to buckle the pinned-pinned column is the

$$\mathbf{P}_{\rm cr} = \frac{\pi^2 E I}{L_e^2}$$

 P_{cr} = the euler buckling load

E = Young's modulus for the materials

I = the least second moment of area of the section

 $L_e = effective length$

Assumptions / limitation of the Euler formula

- Axially loaded column
- Column is perfectly straight
- Isotropic and homogeneous material
- Material behaves within elastic properties
- Both ends of column support are pinned

Summary

- Long slender members subjected to an axial compressive force are called columns.
- Lateral deflection is called buckling.
- Maximum axial load a column can support when on the verge of buckling is called the critical load, Pcr.

References

- Hibbeler, R.C., Mechanics Of Materials, 9th Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5th Edition in SI Units, McGraw Hill, 2009.

MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN

Buckling of Columns by Nur F Ariffin

Communitising Technology