

MECHANICS OF MATERIALS

Torsion

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources

Torsion by Nur F Ariffin

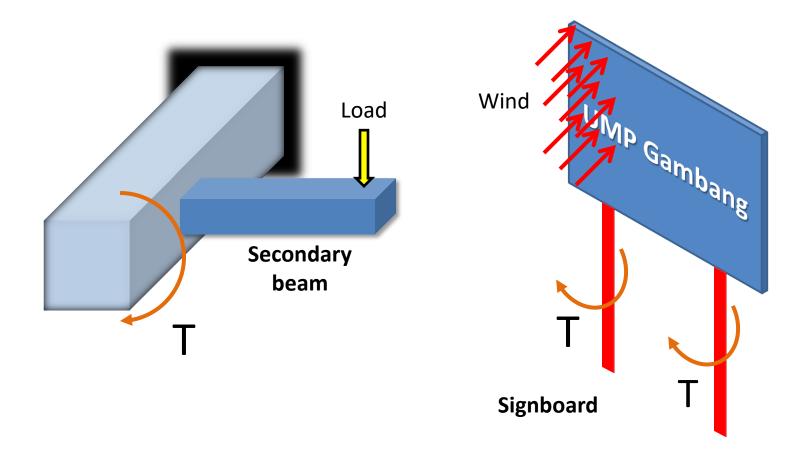
Communitising Technology

Chapter Description

- Expected Outcomes
 - Define the concept on torsion for circular shaft hollow and solid shaft
 - Describe the concept on deformation of a circular shaft hollow and solid shaft
 - Calculate the stress and shear stress for the circular shaft
 - Calculate the polar moment of inertia
 - Apply the principle of torsion formula determine the torsional deformations
 - Calculate the angle of twist for circular shaft

8.1 Introduction

- Stresses also can occur within a structural element due to torsional or twisting effect
- Torsion refers to the loading of a member that tends to cause it to rotate or twist
- Such a load is called a torque, rotational moment, twisting moment or couple
- **Torsional deformation** created when a torque is applied to a member, shearing stress is developed



- Torsion Applications more to mechanical engineering
 machineries, shaft transmitting power, turbine, motor etc
- Applications due to civil engineering : certain structures are considered to torsion (some cases torsion is unnoticed)
- Examples:
 - Secondary beam
 - Column for signboard
 - Beam supported gutter

Big Pictures

Torque

- Torque is a moment that tends to twist a member about its longitudinal axis
- This simplest device for accomplishing this function is called a shaft

8.2 Shaft Deformation

- As mention earlier, torque is a moment that tends to twist a member about its longitudinal axis
- If the angle of rotation is small, the length of the shaft and its radius will remain unchanged

• From observation, the angle of twist of the shaft is proportional to the applied torque and to the shaft length

 $\phi \propto T$ $\phi \propto L$

- When subjected to torsion, every cross section of a circular shaft remains plane and undistorted
- Cross-sections for hollow and solid circular shafts remain plain and undistorted because a circular shaft is axisymmetric
- Cross-sections of noncircular (non-axisymmetric) shafts are distorted when subjected to torsion

8.3 Failure modes

Failure of **ductile** specimen:

A ductile specimen breaks along a plane of maximum shear, i.e., a plane perpendicular to the shaft axis

Failure of **brittle** specimen:

A brittle specimen breaks along planes perpendicular to the direction in which tension is a maximum, i.e., along surfaces at 45° to the shaft axis

8.4 Torsion Formula

- When material is linear-elastic, Hooke's law applies
- A linear variation in shear strain leads to a corresponding linear variation in shear stress along any radial line on the cross section
- To determine the shear stress:

$$au_{\max} = \frac{Tc}{J}$$
 or $au = \frac{Tp}{J}$

$$au_{\text{max}} = \frac{Tc}{J} \quad \text{or} \quad \tau = \frac{Tp}{J}$$

$$\tau_{max}$$
 = maximum shear stress in the shaft

- τ = shear stress
- T = resultant internal torque
- J = polar moment of inertia of cross-sectional area
- *c* = outer radius of the shaft
- *p* = intermediate distance

• If the shaft has a **solid circular** cross section:

$$J = \frac{\pi}{2}c^4$$

• If a shaft has a **tubular** cross section:

$$J = \frac{\pi}{2} \left(c_o^4 - c_i^4 \right)$$

Torsional Deformations

 If the shear stresses in a shaft are below the proportional limit of the shaft material (elastic action), then Hooke's Law relates shear stress and shear strain in the torsion member is:

$$\tau = G\gamma$$

• Using Hooke's Law:

8.5 Angle of Twist

• Integrating over the entire length *L* of the shaft, we have

$$\phi = \int_{0}^{L} \frac{T(x)dx}{J(x)G}$$

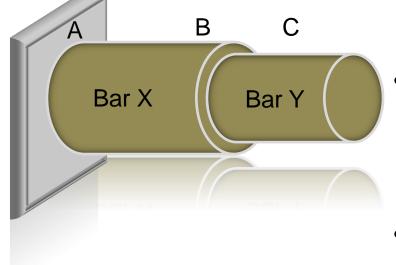
 Φ = angle of twist T(x) = internal torque J(x) = shaft's polar moment of inertia G = shear modulus of elasticity for the material

• Assume material is homogeneous, G is constant, thus

$$\phi = \frac{T_i L_i}{J_i G_i}$$

• Sign convention is determined by right hand rule

Angle Of Twist For Two Bars


• External torsion applied is equal to internal torsion on bar

$$T = T_{bar1} + T_{bar2}$$

Angle of twist for bar X is equal to bar Y

$$\phi_{bar1} = \phi_{bar2}$$

• Total angle of twist can be determine using angle of twist formula $\phi = \frac{TL}{JG}$

References

- Hibbeler, R.C., Mechanics Of Materials, 9th Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5th Edition in SI Units, McGraw Hill, 2009.

MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN

