

### **MECHANICS OF MATERIALS**

## **Shearing Stress In Beam**

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources



Shearing Stress In Beam by Nur F Ariffin

Communitising Technology

#### **Chapter Description**

- Expected Outcomes
  - $\succ$  Explain the shear stress in beam.
  - Apply the shear formula to calculate the shear stress in the beam at the appropriate location(s).



### **6.1 Introduction**

- In the previous chapter, we have discussed the bending stress that exist in beam
- The other stress is **shear stress** which is equally important in beam analysis
- In this present chapter, we will develop a method for finding the shear stress in a beam having a prismatic cross – section and made from homogenous material
- The shear stress in beam will be calculate using shear formula

#### 6.2 Transverse Loading In Beam

- When a shear (V) is applied, non-uniform shear strain distribution over the cross section will cause the cross section to *warp*.
- The relationship between moment and shear is

V = dM/dx

 For rectangular cross section, shear stress varies parabolically with depth and maximum shear stress is along the neutral axis

#### Shear Formula

 The shear formula is used to find the transverse shear stress on the beam's cross-sectional area

$$\tau = \frac{VQ}{It}$$
  
where  $Q = \int_{A'} y dA = \overline{y'}A'$ 

 $\tau$  = the shear stress in the member V = internal resultant shear force I = moment of inertia of the *entire* cross-sectional area t = width of the member's cross-sectional area



#### **Shear Stress Diagrams**

Comparison between shear stress and bending stress





#### References

- Hibbeler, R.C., Mechanics Of Materials, 9<sup>th</sup> Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5<sup>th</sup> Edition in SI Units, McGraw Hill, 2009.





# MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN



Shearing Stress In Beam by Nur F Ariffin

Communitising Technology