

MECHANICS OF MATERIALS

Axial Load

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources

Axial Load by Nur F Ariffin

Communitising Technology

Chapter Description

- Expected Outcomes
 - > Define the elastic deformation of an axially loaded prismatic bar
 - Define the multiple prismatic bars
 - > Define the principle of superposition
 - Define the Saint Venant's principle
 - Calculate the deformations of member under axial load
 - Calculate the deformations of member for stepped composite bar
 - Analyse the deformations in systems of axially loaded bars
 - Analyse the deformations of member for statically indeterminate assemblies.
 - Calculate the deformation of member due to temperature effect.

Introduction

- In Chapter 1, the concept of stress was developed as a mean of measuring the force distribution within a body
- In Chapter 2, the concept of strain was introduced to describe the deformation produced in a body
- In **Chapter 3**, discussed the **behavior** of typical engineering materials and how this behavior can be idealized by equation that relate stress and strain
- In this chapter, discussed two general approaches used to investigated a wide variety of structural member subjected to axial loading and deformation

4.2 Saint-venant's Principle

• Saint-Venant's principle states that both localized deformation and stress tend to "even out" at a distance sufficiently removed from these regions.

4.3 Elastic Deformation Of An Axially Loaded Member

- Using Hooke's law and the definitions of stress and strain, we are able to develop the elastic deformation of a member subjected to axial loads.
- Suppose an element subjected to loads,

$$\sigma = \frac{P(x)}{A(x)}$$
 and $\varepsilon = \frac{d\delta}{dx}$ \longrightarrow $\delta = \int_{0}^{L} \frac{P(x)dx}{A(x)E}$

 δ = small displacement L = original length P(x) = internal axial force A(x) = cross-sectional area E = modulus of elasticity

Constant Load and Cross-Sectional Area

• When a constant external force is applied at each end of the member,

$$\delta = \frac{PL}{AE}$$
Displacement

Sign Convention

• Force and displacement is positive when tension and elongation and negative will be compression and contraction.

4.4 Statically Indeterminate Axially Loaded Member

- A member is statically indeterminate when equations of equilibrium are not sufficient to determine the reactions on a member.
- Example: The bar fixed at both ends

$$\longleftarrow \longrightarrow P \longrightarrow \longrightarrow$$

 In order to establish, specifies the condition to compatibility or kinematic condition

4.5 THERMAL STRESS

- Change in temperature cause a material to change its dimensions
- Since the material is homogeneous and isotropic

$$\delta_T = -\alpha \Delta T L$$

 α = linear coefficient of thermal expansion, property of the material ΔT = algebraic change in temperature of the member

- *L* = original length of the member
- δ = algebraic change in length of the member

References

- Hibbeler, R.C., Mechanics Of Materials, 9th Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5th Edition in SI Units, McGraw Hill, 2009.

MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN

Axial Load by Nur F Ariffin

Communitising Technology