

MECHANICS OF MATERIALS

Mechanical Properties of Materials

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources

Mechanical Properties of Materials by Nur F Ariffin

Chapter Description

- Expected Outcomes
 - Understand the concept of tension and compression test.
 - Explain the relationship between stress strain diagram under tensile test.
 - Identify the mechanical properties of materials by using the concept of stress strain diagram.
 - Explain the stress strain behaviour of ductile and brittle materials.
 - Explain the concept of Hooke's law concept and apply to calculate MOE.
 - > Apply the Poisson's ratio formula to calculate Poisson's ratio.
 - Explain the relationship between shear stress shear strain diagram concept and apply to calculate MOR.

Introduction

- The **ability** of a material to **sustain a load** depends on its strength and can be determine by experiment.
- The most important tests to perform in this regard are the **tension** and **compression** test.
- Example of the materials are:
 - Steel
 - Aluminium
 - Wood
 - Plastic

Tension and Compression Test

• The tests objective is to determine the strength and characteristics of materials

- A tensile test, also known as tension test, is probably the most fundamental type of mechanical test that can be performed on material
- Tensile testing to **pull** apart a material **until it breaks**

Compression Test

- A compression test determines behavior of materials under crushing loads (being pushed together)
- The specimen is compressed and deformation at various loads

The Stress–strain Diagram

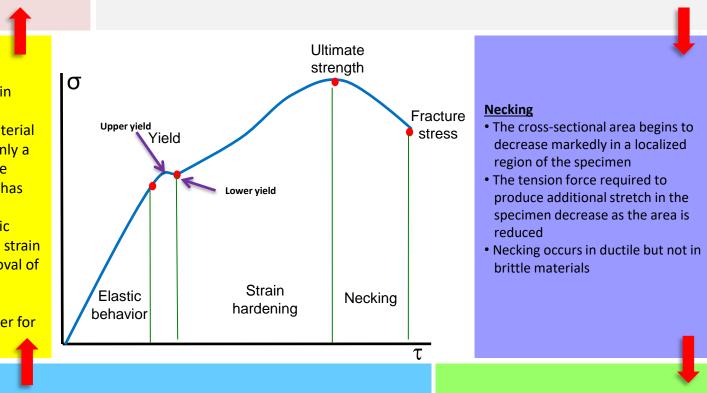
Conventional Stress–Strain Diagram

 Nominal or engineering stress is obtained by dividing the applied load *P* by the specimen's original crosssectional area.

$$\sigma = \frac{P}{A_0}$$

• Nominal or **engineering strain** is obtained by dividing the change in the specimen's gauge length by the specimen's original gauge length.

$$\varepsilon = \frac{\delta}{L_0}$$


-

Strain Hardening

 As the materials stretches, it can withstand increasing amounts of stress

Ultimate Strength

• Based on the engineering definition of stress, the ultimate strength is the largest stress that the material can withstand

<u>Yield</u>

- A slight increase in stress causes a marked increase in strain
- Beginning at yield, the material is permanently altered. Only a portion of the strain will be recovered after the stress has been removed
- Strains are termed inelastic since only a portion of the strain will be covered upon removal of the stress
- The yield strength is an important design parameter for the material

Elastic Behavior

- In general, the initial relationship between stress and strain is linear
- Elastic strain is temporary, meaning that all strain is fully recovered upon removal of the stress
- The slope of this line is called the elastic modulus or the modulus of elasticity

- **Fracture Stress**
- The fracture stress is the engineering stress at which the specimen breaks into two pieces

Stress–Strain Behavior of Materials

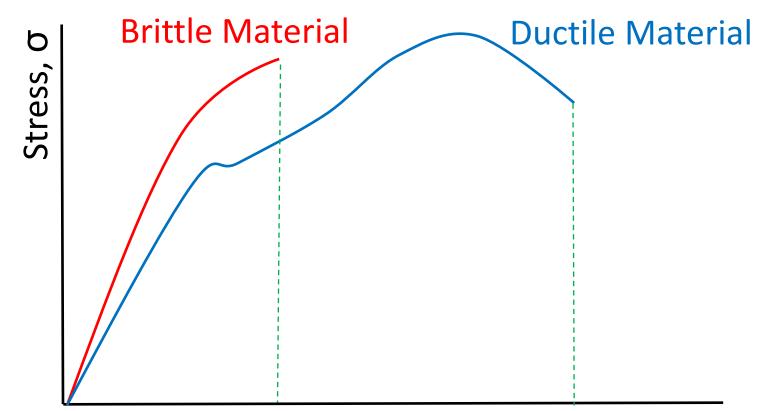
Ductile Materials

- Material that can subjected to large strains before it ruptures is called a ductile material
- Engineer choose ductile materials for design because these materials are capable of absorbing shock and if overloaded it will exhibit large deformation before failed
- Ductility defined as the material's capacity for plastic deformation
- Example: Copper, aluminium, and steel

 The ductility of material can be report its percent elongation or reduction in area at the time of fracture

Percentage Elongation =
$$\frac{L_{final} - L_{original(gauge length)}}{L_{original(gauge length)}} \times 100\%$$

Percentage Reduction of Area =
$$\frac{A_{original} - A_{final}}{A_{original}} \times 100\%$$


Mechanical Properties of Materials by Nur F Ariffin

Brittle Materials

- Materials that exhibit little or no yielding before failure are referred to as brittle materials
- An example : gray cast iron, concrete
- Therefore, **concrete** beams, slabs, columns etc. are reinforced **with steel** as they can bear those tensile forces easily and hence prevent the section from cracks.

Comparison between Stress – Strain Behavior of Materials

Mechanical Properties of Materials by Nur F Ariffin

Hooke's Law

• Hooke's Law defines the linear relationship between stress and strain within the elastic region.

 σ = stress

E = modulus of elasticity or Young's modulus

 ϵ = strain

• E can be used only if a material has linear-elastic behaviour.

Strain Energy

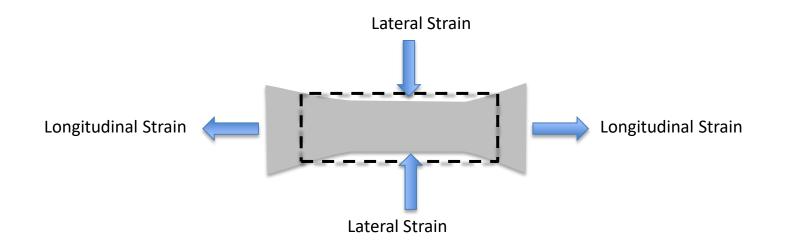
- When material is deformed by external loading, it will store energy internally throughout its volume
- Energy is related to the strains called **strain energy**
- Strain energy is energy stored in a material due to its deformation
- This energy per unit volume is called strain-energy density

Strain Energy- Modulus of Resilience

 When stress reaches the proportional limit, the strainenergy density is the modulus of resilience, u_r

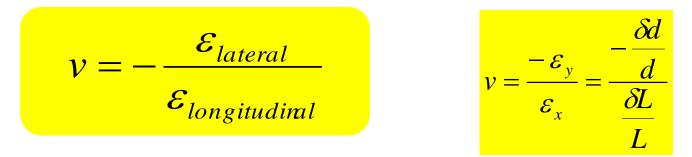
$$u_r = \frac{1}{2}\sigma_{pl}\varepsilon_{pl} = \frac{1}{2}\frac{\sigma_{pl}^2}{E}$$

- The modulus of resilience is proportional to the area under the elastic portion of the stress-strain diagram.
- Units are J/m³.


Strain Energy- Modulus of Toughness

- Modulus of toughness, u_t represents the entire area under the stress-strain diagram indicates just before it fractures
- Equal to the area under the **entire** stress-strain curve.
- Units are Pa or psi.

POISSON'S RATIO


- Poisson's ratio v, is a measure of the lateral strain of a homogeneous and isotropic material versus its longitudinal strain.
- These strain are generally of opposite signs, that is , if one is an elongation, the other will be contraction

 Poisson's ratio, v states that in the elastic range, the ratio of these strains is a constant since the deformations are proportional

 Poisson' ratio is dimensionless and most metal has a value of v between 1/3 and 1/4, the largest possible value of v is 1/2

Failure Of Materials Due To Creep

- When material support a load for long period of time, it will deform until a sudden fracture occurs
- This time-dependent permanent deformation is known as creep
- Both stress and/or temperature play a significant role in the rate of creep
- Creep strength will decrease for higher temperatures or higher applied stresses

Failure Of Materials Due To Fatigue

- When metal subjected to **repeated cycles** of stress or strain, it will ultimately leads to fracture
- This behaviour is called **fatigue**
- Endurance or fatigue limit is a limit which no failure can be detected after applying a load for a specified number of cycles
- This limit can be determined in S-N diagram

References

- Hibbeler, R.C., Mechanics Of Materials, 9th Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5th Edition in SI Units, McGraw Hill, 2009.

MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN

Mechanical Properties of Materials by Nur F Ariffin

Communitising Technology