

MECHANICS OF MATERIALS

Analysis of Strain

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources

Analysis of Strain by Nur F Ariffin

Chapter Description

- Expected Outcomes
 - Identify the concepts of strain.
 - Apply the concept of strain in calculating the normal and shear strain in the body.
 - Calculate the deformation in the body.

1.1 Deformation

- Strain: a force or influence that stretches, pulls, or puts pressure on something, sometimes causing damage
- Deformation: When a force is applied to a body, it will change the body's shape and size
- Eg: A rubber band will undergo a very large deformation when stretched
- Excessive stress in brittle materials such as concrete has caused it to strain until it fractured
- Load will cause all material bodies to deform

1.2 Strain

- Strain- the relative change in shape or size of an object due to externally-applied forces
- Strain describe the deformation in 2 ways:
 - 1. Normal strain (ϵ) epsilon
 - 2. Shear strain (γ) gamma

Normal Strain

- Normal Strain- deformation of the member per unit length
 - Deformation -> The elongation (+) / contraction (-)
- Average normal strain is defined as:

$$\mathcal{E}_{avg} = \frac{\Delta s' - \Delta s}{\Delta s} \qquad \qquad \mathcal{E} = \frac{\delta}{L} = \text{normal strain}$$

$$\Delta s = \text{Original length} \qquad \qquad \delta = \text{Deformation}$$

$$\Delta s' = \text{Final length} \qquad \qquad L = \text{Length}$$

If the normal strain is known, then the approximate final length is

$$\Delta s' \approx (1 + \varepsilon) \Delta s$$

 Normal strain is a dimensionless quantity since it is a ratio of two lengths

Shear Strain

 Change in angle that occurs between two small line segments that are originally perpendicular to one another

$$\gamma_{nt} = \frac{\pi}{2} - \lim_{\substack{B \to A \text{ along} n \\ C \to A \text{ along} t}} \theta'$$

 $\theta < 90 \rightarrow +$ shear strain $\theta > 90 \rightarrow -$ shear strain

NORMAL STRAIN - \triangle LENGTHSHEAR STRAIN- \triangle ANGLE

Analysis of Strain by Nur F Ariffin

Communitising Technology

References

- Hibbeler, R.C., Mechanics Of Materials, 9th Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5th Edition in SI Units, McGraw Hill, 2009.

MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN

Analysis of Strain by Nur F Ariffin

Communitising Technology