For updated version, please click on http://ocw.ump.edu.my

MECHANICS OF MATERIALS

Analysis of Stress

By

NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources

Analysis of Stress by Nur F Ariffin

Communitising Technology

Chapter Description

- Expected Outcomes
 - Identify and explain the concepts of stresses.
 - Apply the concepts of stresses in calculating the normal and shear stress of body.
 - Analyse the average stress acting over the bar's cross-sectional area.
 - Describe the single and double shear stresses thus, calculate the average shear stress.
 - Calculate the stress on oblique plane of body under loading conditions.
 - Calculate the allowable stress by applying the safety factors.

Introduction

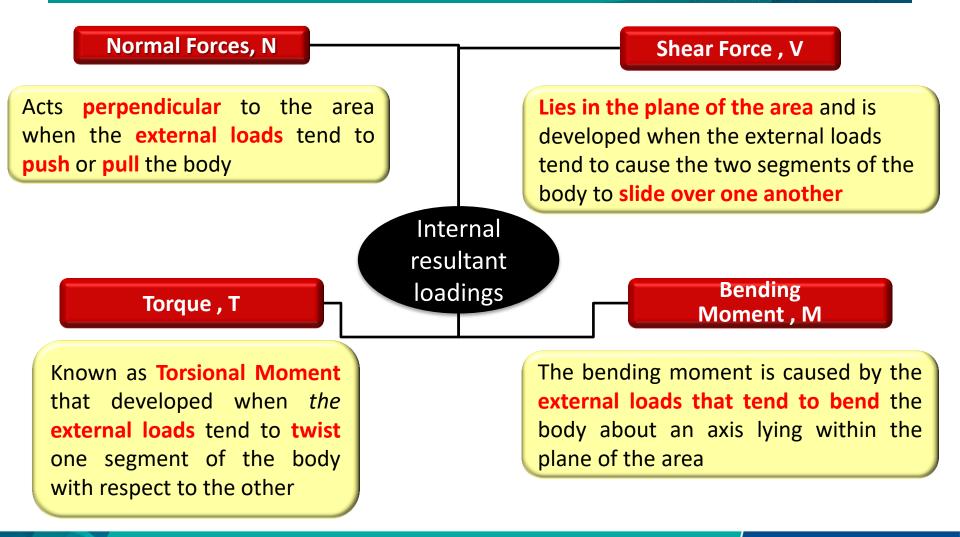
- Mechanics of materials is a study of the relationship between the external loads and internal loads within the body.
- This subject also involves the **deformations** and **stability** of a body when subjected to external forces.
- When a body subjected to an external load is sectioned, there is a distribution of force acting over the sectioned area which holds each segment of the body in equilibrium
- The intensity of this internal force at a point in the body is referred to as stress
- Stress is defined as force per unit area that the force acts upon

Equilibrium of a deformable body

 Equilibrium of a body requires a balance of forces and a balance of moments

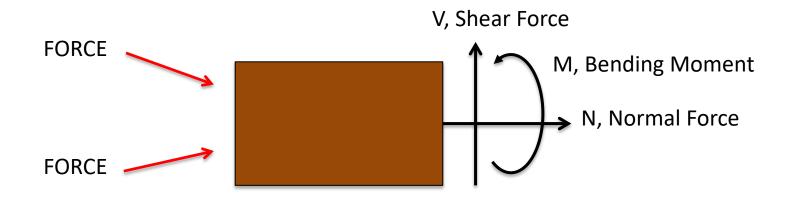
$$\sum \mathbf{F} = \mathbf{0} \qquad \qquad \sum \mathbf{M}_{O} = \mathbf{0}$$

• For a body with x, y, z coordinate system with origin O,


$$\sum F_{x} = 0, \quad \sum F_{y} = 0, \quad \sum F_{z} = 0$$
$$\sum M_{x} = 0, \quad \sum M_{y} = 0, \quad \sum M_{z} = 0$$

• Best way to calculate these forces is to draw the free-body diagram (FBD).

Internal Resultant Loadings


- Internal resultants force To hold the body together when the body subjected to external loads
- Objective of FBD is to determine the resultant force and moment acting within a body.
- In general, there are 4 different types of resultant loadings:
 a) Normal force, N
 - b) Shear force, V
 - c) Torsional moment or torque, T
 - d) Bending moment, M

Types of resultant loadings

Free Body Diagram of the Internal Resultant Loadings

Procedure for analysis

STEP 1 – Support Reactions

- Decide which segment is to be considered
- Draw FBD
- Apply static equation

STEP 2 – Draw FBD

 Draw FBD of the 'cut' segments and indicate the unknown resultants N, V, M and T

STEP 3 – Equations of equilibrium

1.1 Normal Stress

- The most fundamental types of stress exists is the normal stress – the intensity of force or force per unit area
- Indicated by the lowercase Greek letter σ (sigma)
- Normal force acts perpendicular or normal to the cross section of the load-carrying member

$$\sigma_{z} = \lim_{\Delta A \to 0} \frac{\Delta F_{z}}{\Delta A}$$

Average normal stress

• Mathematically expressed:

Stress,
$$\sigma = \frac{\text{Force}(F)}{\text{Area}(A)}$$

Unit: N/mm² or MPa

Equilibrium of Stresses

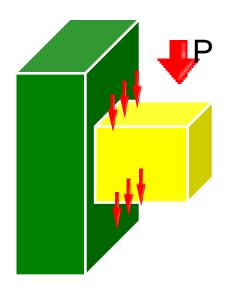
Tensile Stress $(+\sigma)$

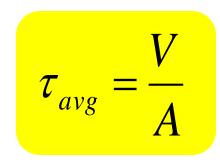
Stretch (elongate) the member and pull the material apart

Compressive Stress (- σ)

Crush and shorten the material of the load-carrying member

1.3 Shear Stress


- The intensity of force or force per unit area
- Stress acts tangent to the cross section of the loadcarrying member
- Called shear stress, **r** (tau)


$$\tau_{zx} = \lim_{\Delta A \to 0} \frac{\Delta F_x}{\Delta A}$$
$$\tau_{zy} = \lim_{\Delta A \to 0} \frac{\Delta F_y}{\Delta A}$$

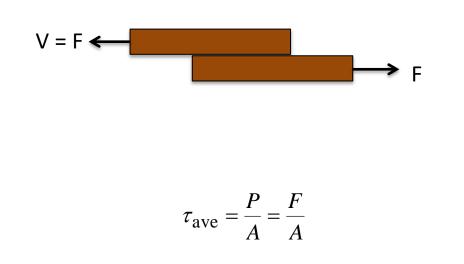
Average Shear Stress

 Average shear stress (τ_{avg}) distributed over each sectioned area that develops a shear force

Where,

- τ = average shear stress
- V = internal resultant shear force
- A = area at that section

TYPES OF SHEAR STRESS



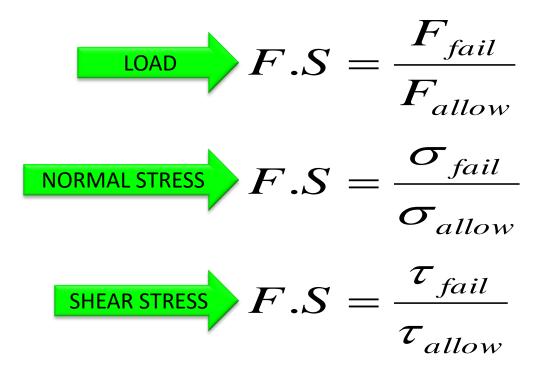
Single Shear

Refer as lap joints

Double Shear

Refer as double lap joints

$$V = F/2 \longleftarrow F$$


$$V = F/2 \longleftarrow F$$

 $\tau_{\rm ave} = \frac{P}{A} = \frac{F}{2A}$

1.4 Allowable Stress

- A factor of safety is needed to obtained allowable load.
- The factor of safety (F.S.) is a ratio of the failure load divided by the allowable load

References

- Hibbeler, R.C., Mechanics Of Materials, 9th Edition in SI units, Prentice Hall, 2013.
- Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, David F. Mazurek, Mechanics of materials 5th Edition in SI Units, McGraw Hill, 2009.

MOHD FAIZAL MD. JAAFAR MOHD AMIRULKHAIRI ZUBIR NUR FARHAYU ARIFFIN

Analysis of Stress by Nur F Ariffin

Communitising Technology