THEORY OF STRUCTURES
 CHAPTER 4 : TRUSSES (METHOD OF JOINT) PART 1

by

Saffuan Wan Ahmad
Faculty of Civil Engineering \& Earth Resources saffuan@ump.edu.my

Chapter 4 : Part 1 - Method of Joint

- Aims
- Determine internal forces in truss member
- Expected Outcomes:
- Able to analyse trusses using method of joint
- References
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley
by Saffuan Wan Ahmad

INTRODUCTION TO TRUSS

- TRUSS - structure composed of slender member joined together at their end points
- Commonly construct consist of wooden struts and metal bars (steel)
- Connection joints - by bolting or welding to gusset plate Objective : To determine the reactions and member forces
- Three methods to carry out the analysis of statically determinate trusses
- M ethod of Joints
- M ethod of Section
- Unit Load M ethod

ANALYSIS OF STATI CALLY DETERMI NATE PLANE TRUSSES USI NG

PART 1 * METHOD OF JOI NTS*

METHOD OF JOINTS

Simple guidelines for analysis:

1. Draw the FBD
2. Solve reactions
3. Select joint with minimum number of unknowns (preferably only 2 unknowns)
4. Analyze magnitude of forces using equilibrium equation
5. Proceed to other joints, concentrating with joints that has minimum no. of unknowns
6. Check member forces at unused joint/ s
7. Tabulate the value of member forces tension (+) and compression (-)

EXAMPLE 1

Using method of joints, determine the force in each member of the trusses shown (assume $L=1 \mathrm{~m}$).

Free Body Diagram (FBD)

Loint A

$\sum \mathrm{Fy}=0$,
$75+F_{A B} \sin 60=0$
$F_{A B}=-86.6 \mathrm{kN}$
$\sum \mathrm{Fx}=0$,
$\mathrm{F}_{\mathrm{AE}}+\mathrm{F}_{\mathrm{AB}} \cos 60=0$
$\mathrm{F}_{\mathrm{AE}}+(-86.6) \cos 60=0$
$F_{\text {AE }}=+43.3 \mathrm{kN}$

Joint B

$$
\begin{aligned}
& \sum F y=0, \\
& -F_{B E} \sin 60-(-86.6 \sin 60)=0 \\
& F_{B E}=+86.6 \mathrm{kN}
\end{aligned}
$$

$\sum \mathrm{Fx}=0$,
$F_{B C}-(-86.6 \cos 60)+F_{B E} \cos 60=0$
$\mathrm{FBC}+86.6 \cos 60+86.6 \cos 60=0$
$\mathrm{F}_{\mathrm{BC}}=\underline{-86.6 \mathrm{kN}}$

Loint D

$\Sigma \mathrm{Fy}=0$,
$105+\mathrm{F}_{\mathrm{DC}} \sin 60=0$

$$
\mathrm{F}_{\mathrm{DC}}=-121.2 \mathrm{kN}
$$

Joint C

$\Sigma \mathrm{Fy}=0$,
$-60-(-121.2 \sin 60)-F_{C E} \sin 60=0$
$\mathrm{F}_{\mathrm{CE}}=+51.9 \mathrm{kN}$
$\Sigma \mathrm{Fx}=0$,
$-F_{D E}-F_{D C} \cos 60=0$
$-F_{D E}-(-121.2 \cos 60)=0$
(c) (i)(3)($) \quad \mathrm{F}_{\mathrm{DE}}=+60.6 \mathrm{kN}$

Checking at Joint E

$\Sigma F x=0$, $-43.3-86.6 \cos 60+51.9 \cos 60+60.6=0$

$$
0=0 \ldots(O K)
$$

$\Sigma \mathrm{Fy}=0$,
$-120+86.6 \sin 60+51.9 \sin 60=0$

Member	Force (kN)	Condition
AB	-86.6	Comp.
BC	-86.6	Comp.
CD	-121.2	Comp.
DE	+60.6	Tension
EA	+43.3	Tension
BE	+86.6	Tension
CE	+51.9	Tension

THANKS

by Saffuan Wan Ahmad

Author Information

Mohd Arif Bin Sulaiman
Mohd Faizal Bin Md. Jaafar
Mohammad Amirulkhairi Bin Zubir
Rokiah Binti Othman
Norhaiza Binti Ghazali
Shariza Binti Mat Aris

