

Hydraulics & Pneumatics

Chapter 1: Hydraulics (Circuit Design)

by Dr. Mohd Fadzil Faisae Faculty of Mechanical Engineering ffaisae@ump.edu.my

Lesson Outcome

 By the end of this lecture, student should be able to design and analyze basic hydraulic circuit both for single-acting and double-acting cylinder

Content

- Parameters in Hydraulic Design
- Control of Single Acting Cylinder
- Control of Double Acting Cylinder

Introduction

- Hydraulic circuit consist of a set of hydraulic components that performed a designed task.
- During the hydraulic circuit design, three factors must be considered:
- 1. Safety of the designed operation
- 2. Conduct the required function
- 3. Efficiency of the operation

cc)

Hydraulic circuit elements

- Each design must have following section
 - 1. Power supply section pump, elec motor, engine, etc
 - 2. Power control section valve, magnetic valve, plc, controller, etc
 - 3. Drive section cylinders, motors

What do engineer need to know?

- Usually, the user specifies the final result of design
 - Eg: Customer need a hydraulic power pack to lift 3 tons load
- Engineer needs to get several answers before offer for hydraulic power pack:
 - For what application
 - How many cylinders
 - Nature of the work (lift/clamp/push etc)

Work out for the following info

- Bore size of cylinder
- Rod size of cylinder
- Stroke length
- Speed of movement required
- Expected load to take

Let customer's requirement

- Q: For what application
 - A: Special purpose of drilling
- Q: How many cylinders
 - A: two double acting cylinders (1 for clamping & 1 for drilling)
- Q: Nature of the work (lift/clamp/push etc)

 A: Clamping cylinder acting first, followed by drilling

And the details from customer

- Bore size of cylinder (clamping = 80mm, drilling = 63mm)
- Rod size of cylinder (standard)
- Stroke length (clamping= 20mm, drilling = 120mm)
- Speed of movement (clamping = 1.5 m/min, drilling = 200mm/min)
- Expected load to take (clamping = 600kg, drilling = 500 kg)

Step 1: Pump capacity

- Calculate pump capacity for hydraulic power unit (Q=n.V)
- Capacity (cm³/min) = Area of cylinder (cm²) X Speed of movement (cm/min)

Aclamping
$$= \frac{\pi}{4} d_1 (cm^2); d_1 = 8 cm$$

= 50.24 cm²
Pump required = 50.24 cm² x150 cm / min
= 7536 cm³ ≈ 7.5/*it* / min (1000 cc = 1/*itre*)

 For drilling, by using similar approach - pump req = 0.623 lit/ min; select 7.5 lit/min

Step 2: Working pressure

$Pr \ essure \ = Force \ \times Area$			
Clamping	presure =	clampingfo	<i>rce</i> (<i>kg</i>)
	presure –	clampingar	$ea(cm^2)$
	=	$\frac{600}{50.24} = 11$.94 <i>kg / cm</i> ²
Drilling	presure $=\frac{5}{3}$	00 <i>kg</i> =16 31.15	5.05 <i>kg / cm</i> ²

Max. working pressure = 16.05 kg/cm2

Step 3: Horsepower

Power
$$(kW) = \frac{PQ}{600}$$
;
 $P = working \quad pressure \quad (kg / cm^2)$
 $Q = flowrate \quad (lit / min)$
Power in $kW = \frac{16.05(kg / cm^2) \times 7.5(l / min)}{600} = 0.2 kW$
 $= 0.26 hp$; $\frac{kW}{0.764} = hp$

• Therefore we can choose the next standard size of electric motor; i.e. 0.5 hp, run at 1440 rpm

Step 4: Reservoir size

- Thumb rule: Reservoir should be 4 times of flow rate of the pump
- Here, pump flow rate = 7.5 l/min, therefore, the reservoir should be at least 30 litres
- Manufacturer standard size = 50, 75, 100, 125 litres, etc. So, 50 litres reservoir can be chosen

Summary of basic parameters

- Reservoir capacity = 50 liters
- Pump capacity = 8 lit/min (in lieu of 7.5 lit/min)
- Motor = 0.5 hp, 1440 rpm
- Working pressure = 20 kg/cm2

Control of Double-Acting Hydraulic Cylinder

Control of Double-Acting Hydraulic Cylinder – Left position

🙃 🛈 🕘 Hydraulics & Pneumatics by M.F.F. Ab. Rashid

Control of Double-Acting Hydraulic Cylinder – Right position

🙃 🛈 🥘 Hydraulics & Pneumatics by M.F.F. Ab. Rashid

Lesson Summary

 In this lesson, we have learned how to design a hydraulic circuit for single and double acting cylinder