Hydraulics \& Pneumatics

Chapter 1: Hydraulics (Circuit Design)

by
Dr. Mohd Fadzil Faisae
Faculty of Mechanical Engineering ffaisae@ump.edu.my

Lesson Outcome

- By the end of this lecture, student should be able to design and analyze basic hydraulic circuit both for single-acting and double-acting cylinder

Content

- Parameters in Hydraulic Design
- Control of Single Acting Cylinder
- Control of Double Acting Cylinder

Introduction

- Hydraulic circuit consist of a set of hydraulic components that performed a designed task.
- During the hydraulic circuit design, three factors must be considered:

1. Safety of the designed operation
2. Conduct the required function
3. Efficiency of the operation

Hydraulic circuit elements

- Each design must have following section

1. Power supply section - pump, elec motor, engine, etc
2. Power control section - valve, magnetic valve, plc, controller, etc
3. Drive section - cylinders, motors

What do engineer need to know?

- Usually, the user specifies the final result of design
- Eg: Customer need a hydraulic power pack to lift 3 tons load
- Engineer needs to get several answers before offer for hydraulic power pack:
- For what application
- How many cylinders
- Nature of the work (lift/clamp/push etc)

Work out for the following info

- Bore size of cylinder
- Rod size of cylinder
- Stroke length
- Speed of movement required
- Expected load to take

Let customer's requirement

- Q: For what application
-A: Special purpose of drilling
- Q: How many cylinders
- A: two double acting cylinders (1 for clamping \& 1 for drilling)
- Q: Nature of the work (lift/clamp/push etc)
- A: Clamping cylinder acting first, followed by drilling

And the details from customer

- Bore size of cylinder (clamping $=80 \mathrm{~mm}$, drilling = 63mm)
- Rod size of cylinder (standard)
- Stroke length (clamping= 20mm, drilling = 120 mm)
- Speed of movement (clamping $=1.5 \mathrm{~m} / \mathrm{min}$, drilling $=200 \mathrm{~mm} / \mathrm{min}$)
- Expected load to take (clamping $=600 \mathrm{~kg}$, drilling $=500 \mathrm{~kg}$)

Step 1: Pump capacity

- Calculate pump capacity for hydraulic power unit ($Q=n . V$)
- Capacity $\left(\mathrm{cm}^{3} / \mathrm{min}\right)=$ Area of cylinder $\left(\mathrm{cm}^{2}\right) X$ Speed of movement ($\mathrm{cm} / \mathrm{min}$)

$$
\begin{aligned}
\text { Aclamping } & =\frac{\pi}{4} d_{1}\left(\mathrm{~cm}^{2}\right) ; d_{1}=8 \mathrm{~cm} \\
& =50.24 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Pump required } & =50.24 \mathrm{~cm}^{2} \times 150 \mathrm{~cm} / \mathrm{min} \\
& =7536 \mathrm{~cm}^{3} \approx 7.5 / \mathrm{lit} / \mathrm{min} \quad(1000 \mathrm{cc}=1 / \text { itre })
\end{aligned}
$$

- For drilling, by using similar approach - pump req = 0.623 lit/ min; select $7.5 \mathrm{lit} / \mathrm{min}$

Step 2: Working pressure

$$
\begin{aligned}
& \text { Pr essure }=\text { Force } \times \text { Area } \\
& \text { Clamping presure }=\frac{\text { clampingfo rce }(\mathrm{kg})}{\text { clampingar ea }\left(\mathrm{cm}^{2}\right)} \\
& \\
& =\frac{600}{50.24}=11.94 \mathrm{~kg} / \mathrm{cm}^{2} \\
& \text { Drilling presure }=\frac{500 \mathrm{~kg}}{31.15}=16.05 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

Max. working pressure $=16.05 \mathrm{~kg} / \mathrm{cm} 2$

Step 3: Horsepower

$$
\begin{aligned}
& \text { Power }(\mathrm{kW})=\frac{P Q}{600} ; \\
& \begin{aligned}
P=\text { working pressure }\left(\mathrm{kg} / \mathrm{cm}^{2}\right) \\
Q=\text { flowrate }(\text { lit } / \mathrm{min})
\end{aligned} \\
& \text { Power in } \mathrm{kW}=\frac{16.05(\mathrm{~kg} / \mathrm{cm} 2) \times 7.5(1 / \mathrm{min})}{600}=0.2 \mathrm{~kW} \\
& \\
& =0.26 \mathrm{hp} ; \frac{\mathrm{kW}}{0.764}=h p
\end{aligned}
$$

- Therefore we can choose the next standard size of electric motor; i.e. 0.5 hp , run at 1440 rpm

Step 4: Reservoir size

- Thumb rule: Reservoir should be 4 times of flow rate of the pump
- Here, pump flow rate $=7.5 \mathrm{l} / \mathrm{min}$, therefore, the reservoir should be at least 30 litres
- Manufacturer standard size $=50,75,100$, 125 litres, etc. So, 50 litres reservoir can be chosen

Summary of basic parameters

- Reservoir capacity = 50 liters
- Pump capacity $=8$ lit/min (in lieu of 7.5 lit/min)
- Motor $=0.5 \mathrm{hp}, 1440 \mathrm{rpm}$
- Working pressure $=20 \mathrm{~kg} / \mathrm{cm} 2$

Control of Single-Acting Hydraulic Cylinder

Control of Double-Acting Hydraulic Cylinder

Control of Double-Acting Hydraulic Cylinder - Left position

(c) (i) () Hydraulics \& Pneumatics by M.F.F. Ab. Rashid

Control of Double-Acting Hydraulic Cylinder - Right position

Lesson Summary

- In this lesson, we have learned how to design a hydraulic circuit for single and double acting cylinder

