Hydraulics \& Pneumatics

Chapter 1: Hydraulics (Pump Examples)

by
Dr. Mohd Fadzil Faisae
Faculty of Mechanical Engineering
ffaisae@ump.edu.my

Example 1

- Calculate the volumetric displacement for a gear pump. Given the inside diameter, outside diameter and the gear width is 40 $\mathrm{mm}, 65 \mathrm{~mm}$ and 20 mm respectively.

Example 1: Solution

- $D_{i}=40 \times 10^{-3} \mathrm{~m}$
- $\mathrm{D}_{0}=65 \times 10^{-3} \mathrm{~m}$
- $\mathrm{L}=20 \times 10^{-3} \mathrm{~m}$

$$
\begin{aligned}
& \left.V_{V_{D}}=\frac{\pi}{\pi} / 4 q^{2}\left(\left(\overline{6} 5 \times 1{ }^{2}\right) f^{-3}\right)^{2}-\left(40 \times 10^{-3}\right)^{2}\right) \times 20 \times 10^{-3} \\
& V_{D}=4.124 \mathrm{e}-5 \mathrm{~m}^{3} / \mathrm{rev}
\end{aligned}
$$

Example 2

- A geometrical volume for an ideal gear pump is $12.5 \mathrm{~cm}^{3}$. This pump delivers the fluid at 16 MPa and run at 1800 rpm . The pump inlet pressure is 200 kPa . Calculate:
-Pump flow rate, Q_{t}
- Fluid power increment, $\Delta \mathrm{N}$
- Output hydraulic power, $\mathrm{N}_{\text {out }}$
- Driving torque, T_{t}

Example 2: Solution

$$
\begin{aligned}
& Q_{t}=V_{g} n=12.5 \times 10^{-6} \times(1800 / 60)=3.75 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& \Delta N=Q_{t} \Delta P=37.5 \times 10^{-5} \times\left(16 \times 10^{6}-2 \times 10^{5}\right) \\
&=5925 \mathrm{~W} \\
& N_{\text {out }}=Q_{t} P=37.5 \times 10^{-5} \times 16 \times 10^{6}=6000 \mathrm{~W} \\
& T_{t}=(V g / 2 \pi) \Delta P=\left(12.5 \times 10^{-6} / 2 \pi\right) \times\left(16 \times 10^{6}-\right. \\
&\left.2 \times 10^{5}\right) \\
&=31.4 \mathrm{Nm}
\end{aligned}
$$

Example 3

- A leakage of oil from a pump is 6% at 230 bar. Calculate the total efficiency if the flow rate at 0 bar is $10 \mathrm{dm}^{\star} \mathrm{min}^{-}$and the motor efficiency is 75%.
- Solution:
$Q(P=0$ bar $)=10 d m s m i n$.
$Q(P=230$ bar $)=10 \times 0.94=9.4 \mathrm{dm}^{3} \mathrm{~min}^{-1}$
$\eta_{\text {mate }}=0.75, \eta_{\text {ow }}=9.4 / 10=0.94$
Therefore

$$
\eta_{t o t}=\eta_{\text {motar }} \times \eta_{v o l}=0.705(=70.5 \%)
$$

Example 4

- A displacement volume for a positive displacement pump is $100 \mathrm{~cm}^{3}$. The pump flow rate is $0.0015 \mathrm{~m}^{3} / \mathrm{s}$ at 1000 rpm and 70 bars. If the input torque of the pump motor is 120 Nm , calculate:
a) Overall efficiency of the pump?
b) Theoretical torque required to operate the pump?

Example 4: Solution

- a) From $Q_{T}=V \times n$, Given $V=100 \mathrm{~cm}^{3} / \mathrm{rev}$ $=0.0001 \mathrm{~m}^{3} / \mathrm{rev}$ $Q_{T}=V \times n$

$$
\begin{aligned}
& =0.0001 \mathrm{~m}^{3} / \mathrm{rev} \times\left(1000 / 60 \mathrm{revs}^{-1}\right) \\
& =0.00167 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Example 4: Solution

- Solve volumetric efficiency

$$
\begin{aligned}
\eta_{v o l} & =Q_{A} / Q_{T} \\
& =0.0015 / 0.00167=0.898=89.8 \%
\end{aligned}
$$

Solve mechanical efficiency

$$
\eta_{m}=P Q_{T} / T_{A} N
$$

($2 \pi / 60$))

$$
=\left(70 \times 10^{5}\right)(0.00167) /(120)(1000 \times
$$

$$
=0.93=93 \%
$$

Therefore, $\eta_{\text {tot }}=0.93 \times 0.898=0.835=83.5 \%$

Example 4: Solution

-b) $\eta_{m}=T_{T} / T_{A}$

$$
\mathrm{T}_{\mathrm{T}}=\eta_{\mathrm{m}} \times \mathrm{T}_{\mathrm{A}}=0.93 \times 120=112 \mathrm{Nm}
$$

