THEORY OF STRUCTURES
 CHAPTER 3 : MOMENT DISTRIBUTION (FOR FRAME) PART 4

by
Saffuan Wan Ahmad
Faculty of Civil Engineering \& Earth Resources
saffuan@ump.edu.my

Chapter 3 : Part 4 - Moment Distribution

- Aims
- Determine the end moment for frame using Moment Distribution Method
- Expected Outcomes :
- Able to do moment distribution for frame.
- References
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley
by Saffuan Wan Ahmad

M DM for Frame without SIDE-SWAY

- MDM- solving indeterminate structures is a process in which the moment in the members are determined by successive approximation.
- Does not result in moment diagram but it provides the magnitude and sense of the internal moments at joint - to obtain the shear and bending moment.
- TERM USED
- Fixed end moment (FEM)
- Carry over factor
- Stiffness or resistance to rotation of a member

Clockwise moments are considered positive Whereas, counterclockwise is negative
by Saffuan Wan Ahmad

M DM for Frame without SIDE-SWAY

Summary

- Stiffness for member: end is pinned equal to:

$$
K=\frac{3 E I}{L}
$$

- Stiffness for member: end is fixed equal to:

$$
K=\frac{4 E I}{L}
$$

EXAMPLE 1

Determine the final moment for frame ABCD shown below. Hence, Draw the SFD and BMD.EI is indicate in the figure.

Frame WITHOUT Sidesway

by Saffuan Wan Ahmad

Fixed End Moment ($\mathbf{M}^{\text {F }}$)

$$
\begin{aligned}
& M_{A B}^{F}=M_{B A}^{F}=M_{C D}^{F}=M_{D C}^{F}=0 \\
& M_{B C}^{F}=-\frac{P a b^{2}}{L^{2}}=-75 k N m=M_{C B}^{F}=75 \mathrm{kNm}
\end{aligned}
$$

Distribution Factor (DF)

JOINT	MEMBER	K	$\Sigma \mathrm{K}$	DF
A	AB	$\frac{4(4 E I)}{3}$	$\frac{16 E I}{3}+\infty$	0
B	BA	$\frac{4(4 E I)}{3}$	$\frac{20 E I}{3}$	0.8
	BC	$\frac{4(2 E I)}{6}$		0.2
C	CB	$\frac{4(2 E I)}{6}$	$\frac{8 E I}{3}$	0.5
	CD	$\frac{4 E I}{3}$		0.5
D	DC	$\frac{4 E I}{3}$	$\frac{4 E I}{3}+\infty$	0

Table M oment Distribution

Member	AB	BA	BC	CB	CD	DC
DF	0	0.8	0.2	0.5	0.5	0
FEM	0	0	-75	75	0	0
$\begin{aligned} & \mathrm{Bal} \\ & \mathrm{co} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 30 \end{array}$	$\begin{array}{r} 60 \\ 0 \end{array}$	$\begin{aligned} & 15 \\ & -18.75 \end{aligned}$	$\begin{array}{r} 7.5 \\ 7.5 \end{array}$	$\begin{aligned} & -37.5 \\ & 0 \end{aligned}$	$\begin{array}{rr} 0 \\ -18.75 \end{array}$
$\begin{aligned} & \mathrm{BaI} \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & 0 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 15 \\ 0 \end{array}$	$\begin{aligned} & \hline 3.75 \\ & -1.88 \end{aligned}$	$\begin{array}{r} -3.75 \\ 1.88 \end{array}$	$\begin{aligned} & -3.75 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ -1.88 \end{array}$
$\begin{array}{\|l\|} \mathrm{Bal} \\ \mathrm{CO} \end{array}$	$\begin{aligned} & 0 \\ & 0.75 \end{aligned}$	$\begin{array}{r} 1.5 \\ 0 \end{array}$	$\begin{aligned} & 0.37 \\ & -0.47 \end{aligned}$	$\begin{array}{r} -0.94 \\ 0.19 \end{array}$	$\begin{aligned} & -0.94 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ -0.47 \end{array}$
Bal	0	0.38	0.1	-0.1	-0.1	0
End Moment	38.25	76.88	-76.88	42.28	-42.29	-21.10

(CC) (8) (1)

Shear Force and Bending M oment Diagram

EXAMPLE 2

Determine the final moment for frame ABCDF with overhanging member BE shown below. Draw the BMD.EI is indicate in the figure.

Fixed End Moment (M ${ }^{\text {F }}$)

$$
\begin{aligned}
& M_{A B}^{F}=-6.67 \mathrm{kNm} \\
& M_{B A}^{F}=6.67 \mathrm{kNm} \\
& M_{B C}^{F}=-7.5 \mathrm{kNm} \\
& M_{C B}^{F}=75 \mathrm{kNm} \\
& M_{C D}^{F}=M_{D C}^{F}=0 \\
& M_{C F}^{F}=-4.8 \mathrm{kNm} \\
& M_{F C}^{F}=7.2 \mathrm{kNm} \\
& M_{B E}^{F}=5(2)=10 \mathrm{kNm}
\end{aligned}
$$

Distribution Factor (DF)

JOINT	MEMBER	K	$\Sigma \mathrm{K}$	DF
B	BA	$\frac{4(4 E I)}{4}$	8EI	0.5
	BC	$\frac{4(4 E I)}{4}$		0.5
	BE	0		0
C	CB	$\frac{4(4 E I)}{4}$	$\frac{49 E I}{5}$	
	CD	$\frac{4(4 E I)}{4}$		
	CF	$\frac{3(3 E I)}{5}$		

Table M oment Distribution
**Note:
Àny no. divide by infinity $\alpha=0$

JOINT	A	B			C				D	F	E
Member	AB	BA	BC	BE	CB	CD	CF	DC	FC	EB	
DF	0	0.5	0.5	0				(0)	1.0	0	
FEM	-6.67	6.67	-7.5	10.0	7.5	0	-4.8	0	7.2	0	
Bal CO		-4.59	-4.49	0					-7.2		
Bal CO											
Bal CO											
Bal											
End Moment									0	0	

MDM for Frame with SIDE-SWAY

- The frames that are non-symmetrical or subjected to non-symmetrical loadings have a tendency to SIDE-SWAY
- Application of this technique is illustrated as below.

Horizontal displacement are EQUAL

Virtual Prop Force
(No side-sway)

Virtual Prop Force is REM OVED
(side-sway)

Summary

- Stiffness for member: end is pinned equal to:

$$
K=\frac{3 E I}{L}
$$

- Stiffness for member: end is fixed equal to:

$$
K=\frac{4 E I}{L}
$$

Summary

- Moment produced at each member when one end of member is displaced relative to other and both ends are FIXED

$$
M=\frac{6 E I \delta}{L^{2}}
$$

- Moment produced at the near end of a member if the remote end is displaced relative to the near end with remote end held in position but allowed to rotate

$$
M=\frac{3 E I \delta}{L^{2}}
$$

EXAMPLE 3

A portal frame ABCD as shown in Figure below is subjected to point load of 100 kN at member BC. El is constant. Analyze using M oment Distribution Method.

100 kN

SOLUTION EXAMPLE 3:

by Saffuan Wan Ahmad

Case 1:

Fixed End Moment (\mathbf{M}^{F}): Non-sway Analysis

$$
\begin{aligned}
& M_{A B}^{F}=M_{B A}^{F}=M_{C D}^{F}=M_{D C}^{F}=0 \\
& -M_{B C}^{F}=M_{C B}^{F}=-75 \mathrm{kNm}
\end{aligned}
$$

Distribution Factor (DF)

JOINT	MEMBER	\mathbf{K}	$\Sigma \mathbf{\Sigma}$	$\mathbf{D F}$
A	AB	$\frac{4 E I}{3}$	$\frac{4 E I}{3}+\infty$	0
	BA	$\frac{4 E I}{3}$		0.67
	BC	$\frac{4 E I}{6}$		0.33
	C	CB	$\frac{4 E I}{6}$	$\frac{19 E I}{15}$

Table Moment Distribution (Non-sway Analysis)

Member	AB	BA	BC	CB	CD	DC
DF	0	0.67	0.33	0.53	0.47	1
M ${ }^{\text {F }}$	0	0	-75	75	0	0
$\begin{array}{\|l\|} \hline \mathrm{Bal} \\ \mathrm{CO} \end{array}$	25.2	50.3	$\begin{array}{\|l\|} \hline 24.7 \\ -19.9 \end{array}$	$\begin{array}{r} 39.75 \\ \hline \quad 12.4 \end{array}$	-35.25	17.63
$\begin{array}{\|l\|} \hline \text { Bal } \\ \text { co } \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 6.7 \end{array}$	13.3	$\begin{array}{ll} \hline 6.6 & \\ -3.3 & \end{array}$	$\begin{array}{rr} & -6.6 \\ 3.3 \end{array}$	-5.8	17.63
$\begin{array}{\|l\|} \hline \text { Bal } \\ \text { CO } \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 1.1 \end{array}$	2.2	$\begin{array}{\|l\|} \hline 1.1 \\ -0.85 \end{array}$	$\begin{array}{r} -1.7 \\ 0.55 \end{array}$	-1.6	
Bal	0	0.57	0.28	-0.29	-0.26	
End Moments	33.0	66.37	-66.37	42.91	-42.91	0

Horizontal Reactions

$\sum M_{B}=0$
$V_{C}(6)+66.37-(100 \times 3)-42.91=0$
$\therefore V_{C}=46.1 \mathrm{kN}$

$$
\begin{aligned}
& \sum F_{y}=0, \\
& V_{B}+V_{C-} 100=0 \\
& \therefore V_{B}=53.9 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{D}=0, \\
& H_{C}(3)-(46.1 \times 4)-42.91=0 \\
& \quad \therefore H_{C}=75.77 \mathrm{kN}
\end{aligned}
$$

To find R
$\sum^{\rightarrow+} F_{H}=0$
$R+H_{B}-H_{C}=0$
$R+33.12-75.77=0$
$\therefore R=42.65 \mathrm{kN}$

Case 2:

Fixed End Moment ($\mathbf{M}^{\text {º }}$: Sway Analysis

$$
\begin{aligned}
& \tan \theta=\frac{4}{3}=\frac{\Delta_{B C}}{\Delta} \Rightarrow \Delta_{B C}=\frac{4 \Delta}{3} \\
& \sin \theta=\frac{4}{5}=\frac{\Delta_{B C}}{\Delta_{C D}} \Rightarrow \Delta_{C D}=\frac{5 \Delta}{3}
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& M_{A B}^{S}=M_{B A}^{S}=\frac{6 E I \Delta}{L^{2}}=\frac{6 E I \Delta}{3^{2}}=\frac{6 E I \Delta}{9} \\
& M_{B C}^{S}=M_{C B}^{S}=-\frac{6 E I \Delta}{L^{2}}=-\frac{6 E I\left(\frac{4 \Delta}{3}\right)}{6^{2}}=-\frac{2 E I \Delta}{9} \\
& M_{C D}^{S}=\frac{3 E I \Delta}{L^{2}}=\frac{3 E I\left(\frac{5 \Delta}{3}\right)}{5^{2}}=\frac{E I \Delta}{5}
\end{aligned}
$$

assume $E I \Delta=45$, therefore :

$$
\begin{aligned}
& M^{S^{A B, B A}}: M^{S_{B C, C B}: M^{S}{ }_{C D, D C}} \\
& \frac{6 E I \Delta}{9}:-\frac{2 E I \Delta}{9}: \frac{E I \Delta}{5} \\
& 30:-10: 9
\end{aligned}
$$

Table M oment Distribution (Sway Analysis)
$\left.\begin{array}{|l|l|r|l|r|l|r|}\hline \text { Member } & \text { AB } & \text { BA } & \text { BC } & \text { CB } & \text { CD } & \text { DC } \\ \hline \text { DF } & 0 & 0.67 & 0.33 & 0.53 & 0.47 & 1 \\ \hline \text { M }^{F} & 30 & 30 & -10 & -10 & 9 & 0 \\ \hline \begin{array}{l}\text { Bal } \\ \text { CO }\end{array} & -6.7 & -13.4 & -6.6 & 0.53 & 0.47 & -3.3\end{array}\right]$

Horizontal Reactions

$$
\begin{aligned}
& \sum M_{A}=0 \\
& -H_{B}(3)+22.91+15.74=0 \\
& \therefore H_{B}=12.88 k N
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{B}=0, \\
& -V_{C}(6)-15.74-11.32=0 \\
& \quad \therefore V_{C}=-4.51 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{D}=0 \\
& H_{C}(3)+11.32+(4.51 \times 4)=0 \\
& \quad \therefore H_{C}=-9.79 \mathrm{kN}
\end{aligned}
$$

To find R

$$
\begin{aligned}
& \sum^{\rightarrow+} F_{H}=0 \\
& R+H_{B}+H_{C}=0 \\
& R+12.88+9.79=0 \\
& \quad \therefore R=22.67 \mathrm{kN}
\end{aligned}
$$

Correction Factor and Final Moment

$\therefore A S M=\frac{R}{R^{\prime}}=\frac{42.65}{22.67}=1.88$

A		B		C		D
Assume sway moment	22.91	15.74	-15.74	-11.32	11.32	0
Actual sway moment (ASM)	43.07	29.59	-29.59	-21.28	21.28	
(Non-sway moment)	33.0	66.37	-66.37	42.91	-42.91	0
Final Moments	76.07	95.96	-95.96	21.63	-21.63	0

**ASM x Assume sway moment

THANKS

by Saffuan Wan Ahmad

Author Information

Mohd Arif Bin Sulaiman
Mohd Faizal Bin Md. Jaafar
Mohammad Amirulkhairi Bin Zubir
Rokiah Binti Othman
Norhaiza Binti Ghazali
Shariza Binti Mat Aris

