For updated version, please click on http://ocw.ump.edu.my

THEORY OF STRUCTURES CHAPTER 3: MOMENT DISTRIBUTION (FOR FRAME) PART 4

Saffuan Wan Ahmad
Faculty of Civil Engineering & Earth Resources
saffuan@ump.edu.my

Chapter 3 : Part 4 – Moment Distribution

Aims

Determine the end moment for frame using Moment Distribution Method

Expected Outcomes :

Able to do moment distribution for frame.

References

- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali, Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley

MDM for Frame without SIDE-SWAY

- MDM- solving indeterminate structures is a process in which the moment in the members are determined by successive approximation.
- Does not result in moment diagram but it provides the magnitude and sense of the internal moments at joint – to obtain the shear and bending moment.
- TERM USED
 - Fixed end moment (FEM)
 - Carry over factor
 - Stiffness or resistance to rotation of a member

Clockwise moments are considered positive Whereas, counterclockwise is negative

MDM for Frame without SIDE-SWAY

Summary

Stiffness for member: end is pinned equal to:

$$K = \frac{3EI}{L}$$

Stiffness for member: end is fixed equal to:

$$K = \frac{4EI}{L}$$

EXAMPLE 1

Determine the final moment for frame ABCD shown below. Hence, Draw the SFD and BMD.EI is indicate in the figure.

Frame WITHOUT Sidesway

Fixed End Moment (MF)

$$M_{AB}^{F} = M_{BA}^{F} = M_{CD}^{F} = M_{DC}^{F} = 0$$

$$M_{BC}^{F} = -\frac{Pab^{2}}{I^{2}} = -75kNm = M_{CB}^{F} = 75kNm$$

Distribution Factor (DF)

JOINT	MEMBER	K	ΣΚ	DF
А	AB	4(4 <i>EI</i>) 3	$\frac{16EI}{3} + \infty$	0
D	BA	4(4 <i>EI</i>) 3	20EI	0.8
В	ВС	4(2 <i>EI</i>) 6	3	0.2
C	СВ	4(2 <i>EI</i>) 6 8 <i>EI</i>		0.5
С	CD	$\frac{4EI}{3}$	3	0.5
D	DC	$\frac{4EI}{3}$	$\frac{4EI}{3} + \infty$	0

Table Moment Distribution

Member	AB	ВА	ВС	СВ	CD	DC
DF	0	0.8	0.2	0.5	0.5	0
FEM	0	0	-75	75	0	0
Bal	0 *****	60	15 *****	-37.5	-37.5	0
СО	30	0	-18.75	7.5	0	18.75
Bal	0	15	3.75	-3.75	-3.75	0
СО	7.5	0	-1.88	1.88	0	-1.88
Bal	0	1.5	0.37	-0.94	-0.94	0
СО	0.75	0	-0.47	0.19	0	-0.47
Bal	0	0.38	0.1	-0.1	-0.1	0
End						
Moment	38.25	76.88	-76.88	42.28	-42.29	-21.10

Shear Force and Bending Moment Diagram

EXAMPLE 2

Determine the final moment for frame ABCDF with overhanging member BE shown below. Draw the BMD. *El* is indicate in the figure.

Frame WITHOUT Sidesway

Fixed End Moment (MF)

$$M_{AB}^{F} = -6.67kNm$$

$$M_{BA}^{F} = 6.67kNm$$

$$M_{BC}^{F} = -7.5kNm$$

$$M_{CB}^{F} = 75kNm$$

$$M_{CD}^{F} = M_{DC}^{F} = 0$$

$$M_{CF}^{F} = -4.8kNm$$

$$M_{FC}^{F} = 7.2kNm$$

$$M_{BE}^{F} = 5(2) = 10kNm$$

Distribution Factor (DF)

JOINT	MEMBER	К	ΣΚ	DF
В	BA	4(4 <i>EI</i>) 4		0.5
	ВС	4(4 <i>EI</i>) 4	8 <i>EI</i>	0.5
	BE	0		0
C	СВ	4(4 <i>EI</i>) 4		
	CD	4(4 <i>EI</i>) 4	49 <i>EI</i> 5	
	CF	3(3 <i>EI</i>) 5		

Table Moment Distribution

**Note:

Any no. divide by infinity $\alpha = 0$

		<u>/</u>					`\			
JOINT	A /		В			С		D	F	E
Member	АВ	ВА	ВС	BE	СВ	CD	CF	DC	FC	EB
DF	0	0.5	0.5	0				0	1.0	0
FEM	-6.67	6.67	-7.5	10.0	7.5	0	-4.8	0	7.2	0
Bal CO	¥	-4.59	-4.49	O	1 #	1			-7.2	
Bal CO	×		1 4	$\left\langle \right\rangle$	1 4	1		*		
Bal CO	¥		1 4	$\bigg \rangle$	1 4	1		*		
Bal										
End Moment									0	0

BMD

MDM for Frame with SIDE-SWAY PAHANG

- The frames that are non-symmetrical or subjected to non-symmetrical loadings have a tendency to SIDE-SWAY
- Application of this technique is illustrated as below.

Horizontal displacement are EQUAL

Virtual Prop Force (No side-sway)

Virtual Prop Force is REMOVED (side-sway)

Universiti

Summary

• Stiffness for member: end is pinned equal to:

$$K = \frac{3EI}{L}$$

• Stiffness for member: end is fixed equal to:

$$K = \frac{4EI}{L}$$

Summary

 Moment produced at each member when one end of member is displaced relative to other and both ends are FIXED

$$M = \frac{6EI\delta}{L^2}$$

 Moment produced at the near end of a member if the remote end is displaced relative to the near end with remote end held in position but allowed to rotate

$$M = \frac{3EI\delta}{L^2}$$

EXAMPLE 3

A portal frame ABCD as shown in Figure below is subjected to point load of 100 kN at member BC. El is constant. Analyze using Moment Distribution Method.

SOLUTION EXAMPLE 3:

Case 1: Fixed End Moment (MF): Non-sway Analysis

$$M_{AB}^{F} = M_{BA}^{F} = M_{CD}^{F} = M_{DC}^{F} = 0$$

$$-M_{BC}^{F} = M_{CB}^{F} = -75kNm$$

Distribution Factor (DF)

JOINT	MEMBER	K	ΣΚ	DF
А	AB	$\frac{4EI}{3}$	$\frac{4EI}{3} + \infty$	0
D	ВА	$\frac{4EI}{3}$	2EI	0.67
В	ВС	$\frac{4EI}{6}$	ZEI	0.33
С	СВ	$\frac{4EI}{6}$	19 <i>EI</i>	0.53
C	CD	3 <i>EI</i> 5	15	0.47
D	DC	3 <i>EI</i> 5	$\frac{3EI}{5}$	1

Table Moment Distribution (Non-sway Analysis)

Member	AB	ВА	ВС	СВ	CD	DC
DF	0	0.67	0.33	0.53	0.47	1
M ^F	0	0	-75	75	0	0
Bal		50.3	24.7	39.75	-35.25	
CO	25.2		-19.9	12.4		17.63
Bal	0	13.3	6.6	-6.6	-5.8	17.63
СО	6.7		-3.3	3.3		
Bal	0	2.2	1.1	-1.7	-1.6	
CO	1.1		-0.85	0.55		
Bal	0	0.57	0.28	-0.29	-0.26	
End Moments	33.0	66.37	-66.37	42.91	-42.91	0

Horizontal Reactions

$$\sum M_A = 0,$$

$$-H_B(3) + 33.0 + 66.37 = 0$$

$$\therefore H_B = 33.12kN$$

$$\sum M_B = 0,$$

$$V_C(6)+66.37-(100\times3)-42.91=0$$

$$\therefore V_C = 46.1kN$$

$$\sum F_{y} = 0,$$

$$V_B + V_{C-} 100 = 0$$

$$\therefore V_B = 53.9kN$$

$$\sum M_D = 0,$$

$$H_C(3) - (46.1 \times 4) - 42.91 = 0$$

$$\therefore H_C = 75.77kN$$

Case 2: Fixed End Moment (M^F): Sway Analysis

$$\tan \theta = \frac{4}{3} = \frac{\Delta_{BC}}{\Delta} \Longrightarrow \Delta_{BC} = \frac{4\Delta}{3}$$

$$\sin\theta = \frac{4}{5} = \frac{\Delta_{BC}}{\Delta_{CD}} \Rightarrow \Delta_{CD} = \frac{5\Delta}{3}$$

therefore,

$$M^{S}_{AB} = M^{S}_{BA} = \frac{6EI\Delta}{L^{2}} = \frac{6EI\Delta}{3^{2}} = \frac{6EI\Delta}{9}$$

$$M^{S}_{BC} = M^{S}_{CB} = -\frac{6EI\Delta}{L^{2}} = -\frac{6EI(\frac{4\Delta}{3})}{6^{2}} = -\frac{2EI\Delta}{9}$$

$$M^{S}_{CD} = \frac{3EI\Delta}{L^{2}} = \frac{3EI(\frac{5\Delta}{3})}{5^{2}} = \frac{EI\Delta}{5}$$

assume
$$EI\Delta = 45$$
, therefore :

$$M^{S}_{AB,BA}:M^{S}_{BC,CB}:M^{S}_{CD,DC}$$

$$\frac{6EI\Delta}{9}:-\frac{2EI\Delta}{9}:\frac{EI\Delta}{5}$$

$$30 : -10 : 9$$

Table Moment Distribution (Sway Analysis)

Member	AB	ВА	ВС	СВ	CD	DC
DF	0	0.67	0.33	0.53	0.47	1
MF	30	30	-10	-10	9	0
Bal		-13.4	-6.6 ********	0.53	0.47	
CO	-6.7	<i>y</i> -	0.27	-3.3		0.24
Bal	0	-0.18	-0.09	1.75	1.55	
СО	-0.09		0.88	-0.5		
Bal	0	-0.59	-0.29	0.27	0.23	
СО	-0.3		0.14	-0.15		
Bal	0	-0.09	-0.05	0.08	0.07	
Assume Sway Moment	22.91	15.74	-15.74	-11.32	11.32	0

Horizontal Reactions

$$\sum M_A = 0,$$

$$-H_B(3) + 22.91 + 15.74 = 0$$

$$\therefore H_B = 12.88kN$$

$$\sum M_B = 0,$$

$$-V_C(6) - 15.74 - 11.32 = 0$$

$$\therefore V_C = -4.51kN$$

$$\sum M_D = 0,$$

$$H_C(3) + 11.32 + (4.51 \times 4) = 0$$

$$\therefore H_C = -9.79kN$$

Correction Factor and Final Moment

$$\therefore ASM = \frac{R}{R'} = \frac{42.65}{22.67} = 1.88$$

Α		E	В			D
Assume sway moment	22.91	15.74	-15.74	-11.32	11.32	0
Actual sway moment (ASM)	43.07	29.59	-29.59	-21.28	21.28	
(Non-sway moment)	33.0	66.37	-66.37	42.91	-42.91	0
Final Moments	76.07	95.96	-95.96	21.63	-21.63	0

**ASM x Assume sway moment

THANKS

Author Information

Mohd Arif Bin Sulaiman Mohd Faizal Bin Md. Jaafar Mohammad Amirulkhairi Bin Zubir Rokiah Binti Othman Norhaiza Binti Ghazali Shariza Binti Mat Aris

