For updated version, please click on http://ocw.ump.edu.my

THEORY OF STRUCTURES CHAPTER 3 : MOMENT DISTRIBUTION (FOR BEAM) PART 3

by Saffuan Wan Ahmad Faculty of Civil Engineering & Earth Resources saffuan@ump.edu.my

by Saffuan Wan Ahmad

Chapter 3 : Part 3 – Slope Deflection

- Aims
 - Determine the end moment for beam using Moment Distribution Method
- Expected Outcomes :
 - Able to do moment distribution for beams.
- References
 - Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
 - Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
 - Structural Analysis, SI Edition by Aslam Kassimali, Cengage Learning
 - Structural Analysis, Coates, Coatie and Kong
 - Structural Analysis A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley

MOMENT DISTRIBUTION METHOD

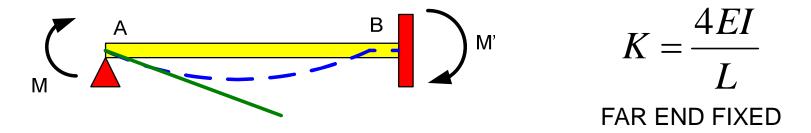
SIGN CONVENTION

-Clockwise moment consider positive, whereas counterclockwise moment are negative.

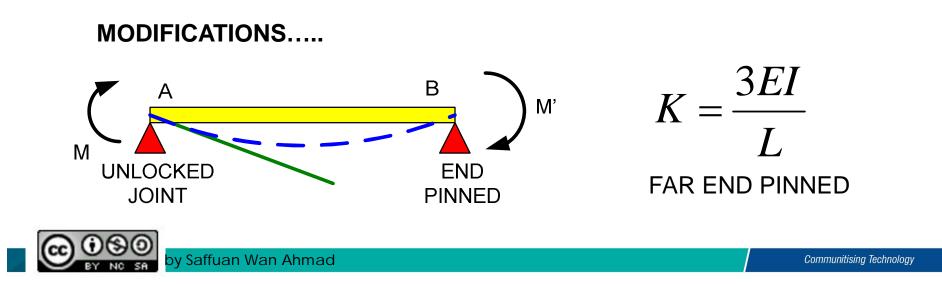
FIXED END MOMENTS (FEMs)

-Can be determined from the table.

MEMBER STIFFNESS FACTOR

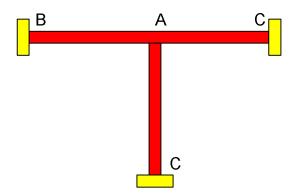


Stiffness factor at A can be defined as the amount of moment M required to rotate the end A of the beam = 1 rad



JOINT STIFFNESS FACTOR

-The total stiffness factor is a sum of the member stiffness factor at the joint.



$$K_T = \sum K$$

$$= K_{AB} + K_{AD} + K_{AC}$$

CARRY OVER

In MDM, we have to analyze the effects of applying imaginary moments at a specified point



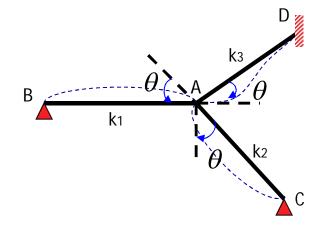
The beam in Figure, when it receives a moment M at A, will develop at B moment of M/2.

This M/2 is called the *carry over moment*

If the far end B were hinged, the CO will be zero

DISTRIBUTION FACTOR (DF)

A moment which tends to rotate without translation a joint to which several members are connected will be divided amongst the connected members in proportion to their stiffnesses.



Assumption: Connected at A Rotation θis given to joint A by external moment

- i. The rotation of each member at A is obviously $\boldsymbol{\theta}$
- ii. The moments MAB, MAC, MAD (assuming up to MO will be in ratio k1;k2:k3

DISTRIBUTION FACTOR (DF)

$$M_i = K_i \theta$$

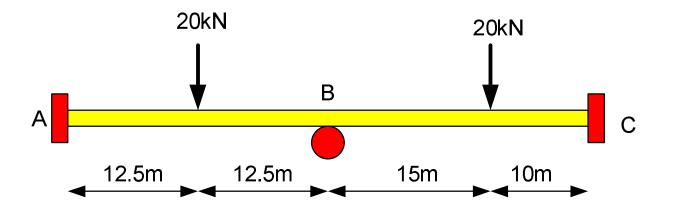
$$M = \theta \sum K_i$$

$$DF_i = \frac{M_i}{M} = \frac{K_i \theta}{\theta \sum K_i}$$

$$DF = \frac{K}{\sum K}$$

EXAMPLE 1

A continuous beam ABC is shown in figure below. Analyse the beam to for its end moment and draw the shear force and bending moment diagram. Assume EI is constant



Solution...

i-Distribution Factor (DF)

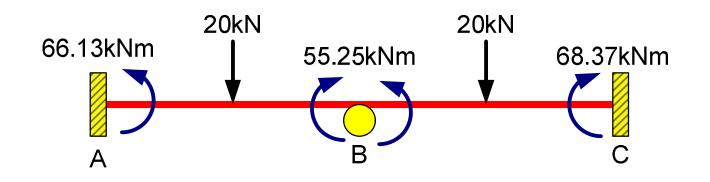
JOINT	MEMBER	Κ	$\sum K$	DF
A	AB	4 EI/25	$4 EI/25 + \infty$	0
B	BA	4 EI/25	8 <i>EI</i> /25	0.5
	BC	4 EI/25		0.5
С	CD	4 EI/25	$4 EI/25 + \infty$	0

ii-Fixed End Moment

$$M_{AB}^{F} = \frac{-20(12.5)(12.5)^{2}}{25^{2}} = -62.5kNm$$
$$M_{BA}^{F} = +62.5kNm$$
$$M_{BC}^{F} = \frac{-(20)(15)(10)^{2}}{25^{2}} = -48kNm$$
$$M_{BC}^{F} = \frac{-(20)(15)^{2}(10)}{25^{2}} = +72kNm$$

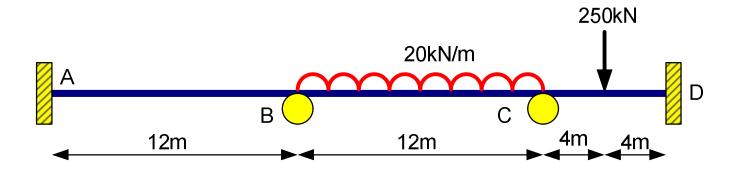
iii-Distribution Table

JOINT	Α	В		С
MEMBER	AB	BA	BC	СВ
D.F	0	0.5	0.5	0
FEM É	-62.5	62.5	-48	72
BAL	0	-7.25	-7.25	0
C.O	-3.63	0	0	-3.63
BAL	0	0	0	0
END MOMENT	-66.13	+55.25	-55.25	68.37



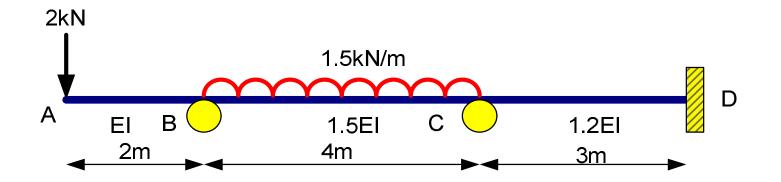
Food of mind

Determine the internal moments at each support of the beam shown in figure below. EI is constant.



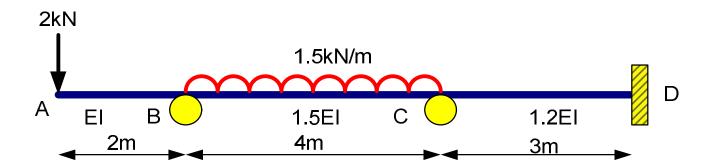
EXAMPLE 2

Determine the internal moment at each support of the beam shown in figure below. The moment of inertial of each span is indicated.



Solution..

The moment does not get distributed in the overhanging span AB, so the distributed factor $(DF)_{AB} = 0$ and $(DF \neq_{BA} 1.0)$



Solution...

i-Distribution Factor (DF)

JOINT	MEMBER	K	$\sum K$	DF
A	AB	-	-	—
	BA	-	4(1.5EI)/	0
B	BC	4(1.5 EI)/4	4	1.0
С	CB	4(1.5EI)/4	3.1 <i>EI</i>	0.48
	CD	4(1.2EI)/3	J.1 L1	0.52
D	DC	4(1.2EI)/3	$4(1.2EI)/3 + \infty$	0

SA

by Saffuan Wan Ahmad

Author Information

Mohd Arif Bin Sulaiman Mohd Faizal Bin Md. Jaafar Mohammad Amirulkhairi Bin Zubir Rokiah Binti Othman Norhaiza Binti Ghazali Shariza Binti Mat Aris

by Saffuan Wan Ahmad