THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR BEAM) PART 1

by
Saffuan Wan Ahmad Faculty of Civil Engineering \& Earth Resources saffuan@ump.edu.my

Chapter 3 : Part 1 - Slope Deflection

- Aims
- Determine the end moment for beam using Slope Deflection Method.
- Expected Outcomes:
- Able to indicate the degree of freedom.
- Able to indicate the moment due to angular displacement.
- Able to determine the moment due to linear displacement
- Able to determine the fixed end moment
- Able to write the slope deflection equation.
- References
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley

INTRODUCTION

- Introduced for analyzing statically indeterminate structure - reactions and internal forces.
-The method required the solution of simultaneous equations representing the overall system of equilibrium equation.

DEGREE OF FREEDOM

- When a structure is loaded, specified point on it call nodes, will undergo displacements.
- These displacement are referred to as the degree of freedom for the structure.
- To determined the number of degrees of freedom, we can imagine the structure to consist of a series member connected to nodes, which is usually located at JOINT, SUPPORT, and at the END OF MEMBER or where the member have SUDDEN CHANGE IN CROSS SECTION.
by Saffuan Wan Ahmad

SUDDEN CHANGE

EXAMPLE

When load P is applied to the beam, will cause node A to rotate, while node B is completely restricted from moving.

One degree of freedom, θ_{A}

Four degree of freedom, $\theta_{A}, \theta_{B}, \theta_{C}, \Delta_{C}$

Three degree of freedom,

$\theta_{B}, \theta_{C}, \Delta_{B}$

Conclusion

FOOD OF MIND

Find the number of degree of freedom

SLOPE DEFLECTION EQUATION

Angular displacement at A
(Near)
Angular displacement at B
(Far)
Linear displacement
Fixed end moment

1. ANGULAR DISPLACEMENT AT A

$$
M_{A B}^{\theta}=\frac{4 E I}{L} \theta_{A}
$$

$$
M_{B A}^{\theta}=\frac{2 E I}{L} \theta_{A}
$$

2. ANGULAR DISPLACEMENT AT B

$$
M_{B A}^{\theta}=\frac{4 E I}{L} \theta_{B}
$$

$$
M_{A B}^{\theta}=\frac{2 E I}{L} \theta_{B}
$$

EXAMPLE.

$$
\begin{aligned}
& \text { (} \\
& M_{A B}^{\theta}=\frac{4 E I}{L} \theta_{A} \\
& \frac{2 E I}{L} \theta_{B} \\
& M_{B A}^{\theta}=\frac{4 E I}{L} \theta_{B} \\
& \frac{2 E I}{L} \theta_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& M_{B C}^{\theta}=\frac{4 E I}{L} \theta_{B} \\
& 2 E I \\
& { }_{L} \theta_{C} \\
& M_{C B}^{\theta}=\frac{4 E I}{L} \theta_{C} \\
& \frac{2 E I}{L} \theta_{B}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& M_{C D}^{\theta}=\frac{4 E I}{L} \theta_{C} \\
& 2 E I \\
& { }_{L} \theta_{D} \\
& M_{D C}^{\theta}=\frac{4 E I}{L} \theta_{D} \\
& \frac{2 E I}{L} \theta_{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& M_{D E}^{\theta}=\frac{4 E I}{L} \theta_{D} \\
& 2 E I \\
& { }_{L} \theta_{E} \\
& M_{E D}^{\theta}=\frac{4 E I}{L} \theta_{E} \\
& \frac{2 E I}{L} \theta_{D}
\end{aligned}
$$

3. RELATIVE LINEAR DISPLACEMENT

EXAMPLE 1

Determine the moment due to linear displacement for each members. Assume 2 mm settlement occur at support B.

$$
\begin{aligned}
M_{A B}^{\Delta}=M_{B A}^{\Delta} & =-\frac{6 E I \Delta}{L^{2}} \\
& =-\frac{6 E I(+0.002)}{4^{2}} \\
& =-0.003 E I \\
M_{B C}^{\Delta}=M_{B C}^{\Delta} & =-\frac{6 E I \Delta}{L^{2}} \\
& =-\frac{6 E I(-0.002)}{4^{2}} \\
& =+0.003 E I
\end{aligned}
$$

FOOD OF MIND

Determine the moment due to linear displacement for each members. Assume 2 mm and 1 mm settlement occur at support B and C respectively.

4. FIXED END MOMENT

Moment cause by external load whilst the both support are fixed.

- REFER TABLE

EXAMPLE 2

Determine the Fixed End Moment for each members.

$$
\begin{aligned}
M_{A B}^{F} & =-\frac{P L}{8} \\
& =-\frac{7(4)}{8} \\
& =-3.5 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
M_{B A}^{F} & =+\frac{P L}{8} \\
& =+\frac{7(4)}{8} \\
& =+3.5 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
M_{C B}^{F} & =-\frac{w L^{2}}{12} \\
& =-\frac{10(4)^{2}}{12} \\
& =-13.33 \mathrm{kNm} \\
M_{C B}^{F} & =+\frac{w L^{2}}{12} \\
& =+\frac{10(4)^{2}}{12} \\
& =+13.33 \mathrm{kNm}
\end{aligned}
$$

SLOPE DEFLECTION EQUATION

Angular displacement at B
moment
Linear displacement

Angular displacement at B
Angular displacement at A

Write down the slope deflection equation

$$
\begin{aligned}
& M_{T U}=\frac{4 E I \theta_{T}}{L}+\frac{2 E I \theta_{U}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{T U}^{F} \\
& M_{U T}=\frac{4 E I \theta_{U}}{L}+\frac{2 E I \theta_{T}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{U T}^{F}
\end{aligned}
$$

EXAMPLE 3

Analyse the two span continuous beam as shown below for the bending moment at the support point or member end using SDM. The relative flexural rigidity for both span are identical ie El is constant and the beam is subjected to a point moment of 100 kNm at B

Solution.
Fixed End Moment

$$
M_{A B}^{F}=M_{B A}^{F}=M_{B C}^{F}=M_{C B}^{F}=0
$$

Slope Deflection Equation $\theta_{A}=\theta_{C}=0$

$$
\begin{gathered}
\Delta=0 \\
M_{A B}=\frac{4 E I \theta_{A}}{L}+\frac{2 E I \theta_{B}}{L}-\frac{6 E \not \backslash}{L^{2}}+M_{A B}^{F}=\frac{E I \theta_{B}}{3} \\
M_{B A}=\frac{4 E I \theta_{B}}{L}+\frac{2 E I \theta_{A}}{L}-\frac{6 E I \not L^{2}}{L^{2}}+M=\frac{2 E I \theta_{B}}{3}
\end{gathered}
$$

$$
\begin{array}{ll}
M_{B C}=\frac{4 E I \theta_{B}}{L}+\frac{2 E I \theta_{C}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{B C}^{F} & =\frac{2 E I \theta_{B}}{3} \\
M_{C B}=\frac{4 E I \theta_{2}}{L}+\frac{2 E I \theta_{B}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{C D}^{F} & =\frac{E I \theta_{B}}{3}
\end{array}
$$

EQUILIBRIUM AT JOINT

$$
\begin{aligned}
& \sum M_{B}=100 \\
& M_{B A}+M_{B C}=100 \\
& \frac{2 E I \theta_{B}}{3}+\frac{2 E I \theta_{B}}{3}=100
\end{aligned} \theta_{B}=\frac{75}{E I}
$$

SUBSTITUTING INTO SDE

$$
\begin{aligned}
& M_{A B}=+25 \mathrm{kNm} \\
& M_{B A}=+50 \mathrm{kNm} \\
& M_{B C}=+50 \mathrm{kNm} \\
& M_{C B}=+25 \mathrm{kNm}
\end{aligned}
$$

EXAMPLE 4

In figure below, the two span continuous beam shown earlier is now subjected two in span loads of UDL having an intensity of $10 \mathrm{kN} / \mathrm{m}$ over span AB and a point load of 25 kN at the mid span of BC . El is constant. Determine the support moment at A, B and C. Draw the bending moment diagram.

SOLUTION

Step \# 1
FIXED END MOMENT

$$
\begin{aligned}
& M_{A B}^{F}=\frac{-W L^{2}}{12}=\frac{-10(6)^{2}}{12}=-30 \mathrm{kNm} \\
& M_{B A}^{F}=+30 \mathrm{kNm} \\
& M_{B C}^{F}=\frac{-P L}{8}=\frac{-25(6)}{8}=-18.75 \mathrm{kNm} \\
& M_{C B}^{F}=+18.75 \mathrm{kNm}
\end{aligned}
$$

Step \# 2
SLOPE DEFLECTION EQUATION $\quad \theta_{A}=\theta_{C}=\Delta=0$

$$
\begin{aligned}
& M_{A B}=\frac{4 F / \theta_{A}}{L}+\frac{2 E I \theta_{B}}{L}-\frac{6 F / \Delta}{L^{2}}+M_{A B}^{F} \\
& M_{A B}=\frac{2 E I \theta_{B}}{6}-30 \\
& M_{B A}=\frac{4 E I \theta_{B}}{L}+\frac{2 E I /_{A}}{L}-\frac{6 E}{L^{2}}+M_{B A}^{F} \\
& M_{B A}=\frac{2 E I \theta_{B}}{3}+30 \\
& \text { OQOO}
\end{aligned}
$$

$$
M_{B C}=\frac{4 E I \theta_{B}}{L}+\frac{2 E / \theta_{C}}{L}-\frac{6 E I / 2}{L^{2}}+M_{B C}^{F}
$$

$$
\begin{aligned}
& M_{B C}=\frac{2 E I \theta_{B}}{3}-18.75 \\
& M_{C B}=\frac{4 E I C_{C}}{L}+\frac{2 E I \theta_{B}}{L}-\frac{6 E / 2}{R^{2}}+M_{C B}^{F}
\end{aligned}
$$

$$
M_{C B}=\frac{E I \theta_{B}}{3}+18.75
$$

Step \# 3

Equilibrium Equation

$$
\begin{aligned}
& \sum M_{B}=0 \\
& M_{B A}+M_{B C}=0 \\
& \frac{2 E I \theta_{B}}{3}+30+\frac{2 E I \theta_{B}}{3}-18.75=0 \\
& E I \theta_{B}=-8.38
\end{aligned}
$$

Step \# 4

SUBSTITUTING INTO SDE

$$
\begin{aligned}
& M_{A B}=-32.81 \mathrm{kNm} \\
& M_{B A}=+24.37 \mathrm{kNm} \\
& M_{B C}=-24.38 \mathrm{kNm} \\
& M_{C B}=+15.93 \mathrm{kNm}
\end{aligned}
$$

MOMENT PROFILE

Span AB

$$
\begin{array}{ll}
32.81 & -32.81+24.37+\frac{10(6)^{2}}{2}-R_{A}(6)=0 \\
& R_{B}=28.6 k N \\
& \therefore R_{A}=31.4 k N
\end{array}
$$

Area $=\frac{1}{2}(3.14)(31.4)=49.3 \mathrm{kNm}$
Max Moment $=-32.81+49.3=16.49 \mathrm{kNm}$

Span BC

13.91

Area $=(3)(13.91)=41.73 \mathrm{kNm}$
Max Moment $=-24.37+41.73=17.36 \mathrm{kNm}$
by Saffuan Wan Ahmad
Communitising Technology

BMD

EXAMPLE 5

Continuous beam with settlement at support B and C. Determine the end moment in the figure if there is 1 mm downward movement at support B and C.
Take El is 75 E 3 kNm 3 for all span

SOLUTION

FIXED END MOMENT

$$
\begin{aligned}
& M_{A B}^{F}=-22.5 \mathrm{kNm} \\
& M_{B A}^{F}=+22.5 \mathrm{kNm} \\
& M_{B C}^{F}=-24 \mathrm{kNm} \\
& M_{C B}^{F}=+36 \mathrm{kNm} \\
& M_{C D}^{F}=0 \\
& M_{D C}^{F}=0
\end{aligned}
$$

MOMENT DUE TO SHRINKAGE.

$$
M_{A B}^{\delta}=\frac{-6 E I \Delta}{L^{2}}=\frac{-6\left(75 \times 10^{3}\right)(0.001)}{3^{2}}=-50 \mathrm{kNm}
$$

$$
M_{B A}^{\delta}=\frac{-6 E I \Delta}{L^{2}}=\frac{-6\left(75 \times 10^{3}\right)(0.001)}{3^{2}}=-50 \mathrm{kNm}
$$

$$
M_{B C}^{\delta}=\frac{-6 E I \Delta}{L^{2}}=\frac{-6\left(75 \times 10^{3}\right)(0)}{5^{2}}=0
$$

$$
M_{C B}^{\delta}=\frac{-6 E I \Delta}{L^{2}}=\frac{-6\left(75 \times 10^{3}\right)(0)}{5^{2}}=0
$$

$$
M_{C D}^{\delta}=\frac{-6 E I \Delta}{L^{2}}=\frac{-6\left(75 \times 10^{3}\right)(-0.001)}{5^{2}}=+18 \mathrm{kNm}
$$

$$
M_{D C}^{\delta}=\frac{-6 E I \Delta}{L^{2}}=\frac{-6\left(75 \times 10^{3}\right)(-0.001)}{5^{2}}=+18 \mathrm{kNm}
$$

Slope Deflection Equation.

$$
\begin{aligned}
& M_{A B}=\frac{4 E I \theta_{A}^{\prime}}{L}+\frac{2 E I \theta_{B}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{A B}^{F} \\
& M_{A B}=\frac{2\left(75 \times 10^{3}\right) \theta_{B}}{3}-50-22.5 \\
& M_{A B}=5000 \theta_{B}-72.5
\end{aligned}
$$

$$
\begin{aligned}
& M_{B A}=\frac{4 E I \theta_{B}}{L}+\frac{2 E I \theta_{A}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{B A}^{F} \\
& M_{B A}=\frac{4\left(75 \times 10^{3}\right) \theta_{B}}{3}-50+22.5 \\
& M_{A B}=10,000 \theta_{B}-27.5 \\
& M_{B C}=\frac{4 E I \theta_{B}}{L}+\frac{2 E I \theta_{C}}{L}-\frac{6 E I \Delta}{L^{2}}+M_{B C}^{F} \\
& M_{B C}=\frac{4\left(75 \times 10^{3}\right) \theta_{B}}{3}+\frac{4\left(75 \times 10^{3}\right) \theta_{C}}{3}-24 \\
& M_{B C}=60,000 \theta_{B}+30,000 \theta_{C}-24
\end{aligned}
$$

$$
\begin{aligned}
& M_{C B}=60,000 \theta_{C}+30,000 \theta_{B}+36 \\
& M_{C D}=60,000 \theta_{C}+18 \\
& M_{D C}=30,000 \theta_{C}+18
\end{aligned}
$$

EQUILIBRIUM AT JOINT

$$
\begin{align*}
& \sum M_{B}=0 \\
& M_{B A}+M_{B C}=0 \\
& 160,000 \theta_{B}+30,000 \theta_{C}=51.5 \tag{1}
\end{align*}
$$

$\sum M_{c}=0$
$M_{C B}+M_{C D}=0$
$30,000 \theta_{B}+120,000 \theta_{C}=-54$
$\left[\begin{array}{cc}160,000 & 30,000 \\ 30,000 & 120,000\end{array}\right]\left[\begin{array}{l}\theta_{B} \\ \theta_{C}\end{array}\right]=\left[\begin{array}{c}51.5 \\ -54\end{array}\right]$

Solving by using calculator

$$
\begin{aligned}
\theta_{B} & =4.262 \times 10^{-4} \\
\theta_{C} & =-5.566 \times 10^{-4}
\end{aligned}
$$

SUBSTITUTING INTO SDE

$$
\begin{aligned}
& M_{A B}=-51.19 \mathrm{kNm} \\
& M_{B A}=+15.12 \mathrm{kNm} \\
& M_{B C}=-15.13 \mathrm{kNm} \\
& M_{C B}=+15.39 \mathrm{kNm} \\
& M_{C D}=-15.40 \mathrm{kNm} \\
& M_{D C}=+1.30 \mathrm{kNm}
\end{aligned}
$$

THANKS

by Saffuan Wan Ahmad

Author Information

Mohd Arif Bin Sulaiman
Mohd Faizal Bin Md. Jaafar
Mohammad Amirulkhairi Bin Zubir
Rokiah Binti Othman
Norhaiza Binti Ghazali
Shariza Binti Mat Aris

