THEORY OF STRUCTURES CHAPTER 2 : DEFLECTION (UNIT LOAD METHOD) PART 2

by
Saffuan Wan Ahmad
Faculty of Civil Engineering \& Earth Resources saffuan@ump.edu.my

© (1) (®)

Chapter 2 : Part 2 - Unit Load Method

- Aims
- Determine the slope and deflection by using Unit Load Method
- Expected Outcomes :
- Able to analyze determinate beam - deflection and slope by Unit Load Method
- References
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley
by Saffuan Wan Ahmad

Principle of Virtual Work

- The internal work in transversely loaded beams is taken equal to the strain energy due to bending moment
- The virtual force F_{i} in the $i^{\text {th }}$ mass element in $\Delta=F^{*}{ }_{i} \mathrm{e}_{\mathrm{i}}$ may be taken equal to the bending moment $m_{i j}$ in the $i^{\text {th }}$ mass element due to a unit load at coordinate j

Principle of Virtual Work

(Displacement)

- Sometimes referred as the Unit-Load M ethod
- Generally provides of obtaining the displacement and slope at a specific point on structure i.e. beam, frame or truss
- In general, the principle states that:

Work of Internal Loads

Principle of Virtual Work (Displacement)

- Consider the structure (or body) to be of arbitrary shape
- Suppose it is necessary to determine the displacement Δ of point A on the body caused by the "real loads" P_{1}, P_{2} and P_{3}

Principle of Virtual Work (Displacement)

- Since no external load acts on the body at A and in the direction of the displacement Δ, the displacement can be determined by first placing on the body a "virtual" load suc that this force P^{\prime} acts in the same direction as Δ, (see Figure)

Principle of Virtual Work

(Displacement)

- We will choose P^{\prime} to have a unit magnitude, $\mathrm{P}^{\prime}=1$
- Once the virtual loadings are applied, then the body is subjected to the real loads $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}, (see Figure)
- Point A will be displaced an amount Δ causing the element to deform an amount dL

Principle of Virtual Work

(Displacement)

- As a result, the external virtual force P' \& internal load u "ride along" by Δ and dL and therefore, perform external virtual work of $1 . \Delta$ on the body and internal virtual work of u.dL on the element

- By choosing $P^{\prime}=1$, it can be seen from the solution for Δ follows directly since $\Delta=\Sigma u d L$

Principle of Virtual Work (Slope)

- A virtual couple moment M' having a unit magnitude is applied at this point
- This couple moment causes a virtual load u_{θ} in one of the elements of the body

Principle of Virtual Work (Slope)

Assuming that the real loads deform the element an amount dL, the rotation θ can be found from the virtual-work equation

Principle of Virtual Work (Slope)

PRINCIPLE OF UNIT LOAD METHOD

- The element deform or rotate $\mathrm{d} \theta=(\mathrm{M} / \mathrm{El}) \mathrm{dx}$
- The external virtual work done by the unit load is $1 . \Delta$
- The internal virtual work done by the moment, m

$$
1 \cdot \Delta=\int_{0}^{L} \frac{m d \theta=m(M / E I) d x}{E I} d x
$$

Similarly

$$
1 . \theta=\int_{0}^{L} \frac{m M}{E I} d x
$$

Example 1

Determine the displacement at point B of the steel beam shown in figure.

Take $\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=500 \times 10^{6} \mathrm{~mm} 4$

Real Moment, M

Real Moment, M

$$
\begin{aligned}
& \sum M_{x}=0(\text { clockwise }+v e) \\
& M+\frac{12 x^{2}}{2}=0 \\
& M=-6 x^{2}
\end{aligned}
$$

Virtual Moment, m

Virtual Moment, m

Considered RHS

$0<x<10$

Virtual-Work Equation

$$
\begin{aligned}
1 k N . \Delta & =\int_{0}^{L} \frac{m M}{E I} d x \\
& =\int_{0}^{10} \frac{(-x)\left(-6 x^{2}\right)}{E I} d x \\
& =\frac{15 \times 10^{3} \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \\
\Delta_{B} & =\frac{15 \times 10^{3} \mathrm{kN} . \mathrm{m}^{3}}{200\left(10^{6}\right) \mathrm{kN} / \mathrm{m}^{2}\left(500\left(10^{6}\right) \mathrm{mm}^{4}\right)\left(10^{-12} \mathrm{~m}^{4} / \mathrm{mm}^{4}\right)} \\
& =0.150 \mathrm{~m}=150 \mathrm{~mm}
\end{aligned}
$$

Example 2

Determine the displacement at \mathcal{D} of the steelbeam in figure. Take $\mathcal{E}=200 \mathcal{G P a}, I=300 \mathcal{E} 6 \mathrm{~mm} 4$

30kN

Real Moment, M

@ @®®®

Determine the reaction at

$$
\begin{aligned}
& \sum M_{A}=0(\text { clockwise }+v e) \\
& 120+30(3)-V_{B}(6)=0 \\
& V_{B}=35 k N
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \quad(\text { upward }+v e) \\
& -V_{A}+35-30=0 \\
& V_{A}=5 \mathrm{kN}
\end{aligned}
$$

Member AB : LHS $\quad 0 \leq x \leq 3$

$$
\begin{aligned}
& \sum M_{x}=0(\text { clockwise }+v e) \\
& -M_{1}-5(x)+120=0 \\
& M_{1}=120-5 x
\end{aligned}
$$

Member BC : RHS

$$
0 \leq x \leq 3
$$

$$
\begin{aligned}
& \sum M_{x}=0(\text { clockwise }+v e) \\
& M_{2}-35(x)=0 \\
& M_{2}=35(x)
\end{aligned}
$$

Member CD : RHS
 $0 \leq x \leq 4.5$

$$
\begin{aligned}
& \sum_{M_{3}} M_{x}=0(\text { clockwise }+v e) \\
& \left.M_{2}\right)
\end{aligned}
$$

Virtual moment, m

■ @®®®

Determine the reaction at support

$$
\begin{aligned}
& \sum M_{A}=0(\text { clockwise }+v e) \\
& 1(10.5)-V_{B}(6)=0 \\
& V_{B}=1.75 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y}=0(\text { upward }+v e) \\
& -V_{A}+1.75-1=0 \\
& V_{A}=0.75 \mathrm{kN}
\end{aligned}
$$

Member AB : LHS $\quad 0 \leq x \leq 3$

$$
\begin{aligned}
& \sum M_{x}=0(\text { clockwise }+v e) \\
& -m_{1}-0.75(x)=0 \\
& m_{1}=-0.75 x
\end{aligned}
$$

Member BC : RHS

$$
0 \leq x \leq 3
$$

$$
\begin{aligned}
& \sum M_{x}=0(\text { clockwise }+v e) \\
& m_{2}-1.75(x)+1(x+4.5)=0 \\
& m_{2}=0.75(x)-4.5
\end{aligned}
$$

$0 \leq x \leq 4.5$

$$
\begin{aligned}
& \sum M_{x}=0(\text { clockwise }+v e) \\
& m_{3}+1 . x=0 \\
& m_{3}=-x
\end{aligned}
$$

Virtual-Work Equation

$$
\begin{aligned}
1 k N . \Delta_{d}= & \int_{0}^{L} \frac{m M}{E I} d x \\
= & \int_{0}^{3} \frac{m_{1} M_{1}}{E I} d x+\int_{0}^{3} \frac{m_{2} M_{2}}{E I} d x+\int_{0}^{4.5} \frac{m_{3} M_{3}}{E I} d x \\
= & \int_{0}^{3} \frac{(-0.75 x)(120-5 x)}{E I} d x+\int_{0}^{3} \frac{(0.75 x-4.5)(35 x)}{E I} d x \\
& +\int_{0}^{4.5} \frac{(-x)(0)}{E I} d x
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{D} & =-\frac{371.25}{E I}-\frac{472.5}{E I}+\frac{0}{E I} \\
& =-\frac{843.75 \mathrm{kN} . \mathrm{m}^{3}}{E I}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{D} & =\frac{-843.75 \mathrm{kN} . \mathrm{m}^{3}}{200\left(10^{6}\right) \mathrm{kN} / \mathrm{m}^{2}\left(300\left(10^{6}\right) \mathrm{mm}^{4}\right)\left(10^{-12} \mathrm{~m}^{4} / \mathrm{mm}^{4}\right)} \\
& =-0.0141 \mathrm{~m}=-14.1 \mathrm{~mm}
\end{aligned}
$$

Example 3

Determine the slope at A and deflection at C in the beam shown below

Solution

Real Load (M)

Generalized coordinates

Virtual Load (m_{θ}): Slope

Virtual Load $\left(\mathrm{m}_{\Delta}\right)$: Deflection

Real Load \rightarrow M ?

1. Support reaction,

$$
\begin{aligned}
& \sum M_{A}=0(\text { clockwise }+), \\
& -R_{B}(6)+9(4)+12(3)\left(\frac{3}{2}\right)=0 \\
& \therefore R_{B}=15 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y} \uparrow^{+}=0, \\
& R_{A}-12(3)-9+15=0 \\
& \therefore R_{A}=30 \mathrm{kN}
\end{aligned}
$$

Real Load (M): $0 \leq x \leq 3($ segment $A C)$ $\sum M_{x}=0($ clockwise +), $M_{x}=30 x-12\left(\frac{x^{2}}{2}\right)$
$\therefore M_{x}=30 x-6 x^{2}$

Real Load (M): $3 \leq x \leq 4($ segment $C D)$ $\sum M_{x}=0($ clockwise +), $M_{x}=30 x-12(3)(x-3 / 2)$
$M_{x}=30 x-36 x+54$
$\therefore M_{x}=-6 x+54 \ldots \ldots \ldots .(i i)$

Real Load (M): $0 \leq x \leq 2($ segment $B D)$

$\sum M_{x}=0($ clockwise +),
$-M_{x}=-15 x$
$\therefore M_{x}=15 x_{1(i i i)}$

Virtual Load, m for deflection

Apply point load $\mathrm{P}=1$

$$
\begin{aligned}
& \sum M_{A}=0(\text { clockwise }+) \\
& -R_{B}(6)+1(3)=0 \\
& \therefore R_{B}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y} \uparrow^{+}=0, \\
& R_{A}+R_{B}-1=0 \\
& \therefore R_{A}=\frac{1}{2}
\end{aligned}
$$

Virtual Load (m): $0 \leq x \leq 3$ (segment $A C$)
$\sum M_{x}=0($ clockwise +$)$,
$\therefore M_{x}=\frac{1}{2} x \ldots \ldots \ldots . .(i)$

Deflection at C, Δ_{D} :

$$
\begin{aligned}
\Delta_{D}= & \int \frac{M m}{E I} d x \\
= & \frac{1}{E I} \int_{0}^{3}\left(30 x-6 x^{2}\right)(0.5 x) d x+\frac{1}{E I} \int_{3}^{4}(-6 x+54)(-0.5 x+3) d x \\
& \frac{1}{E I} \int_{0}^{2}(15 x)(0.5 x) d x \\
= & \frac{135.75}{E I}
\end{aligned}
$$

Virtual Load, m for rotation

Apply $\mathrm{m}_{\boldsymbol{\theta}}=1$

$\sum M_{A}=0($ clockwise +),
$-R_{B}(6)+1=0$
$\therefore R_{B}=\frac{1}{6}$

$$
\begin{aligned}
& \sum F_{y} \uparrow^{+}=0, \\
& R_{A}+R_{B}=0 \\
& \therefore R_{A}=-\frac{1}{6}
\end{aligned}
$$

$\overbrace{-1 / 6}^{1} \mathrm{Max}_{\mathrm{x}}^{1}$

Virtual Load (m) : $0 \leq x \leq 3$ (segment $A C$)
$\sum M_{x}=0($ clockwise +),
$\therefore M_{x}=1-\frac{1}{6} x \ldots \ldots \ldots .(i)$

Virtual Load (m): $3 \leq x \leq 4($ segment $C D)$
$\sum M_{x}=0($ clockwise +),
$\therefore M_{x}=1-\frac{1}{6} x \ldots \ldots \ldots .(i i)$

Slope at A, θ_{A} :

$$
\begin{aligned}
\theta_{A}= & \int \frac{M m}{E I} d x \\
= & \frac{1}{E I} \int_{0}^{3}\left(30 x-6 x^{2}\right)\left(1-\frac{x}{6}\right) d x+\frac{1}{E I} \int_{3}^{4}(-6 x+54)\left(1-\frac{x}{6}\right) d x \\
& \frac{1}{E I} \int_{0}^{2}(15 x)\left(\frac{x}{6}\right) d x \\
= & \frac{76.75}{E I}
\end{aligned}
$$

Example 4

Determine the slope and deflection at B in the beam shown below. Given $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$

Moment equation (deflection):

Segment	Condition	$I \mathrm{~mm}^{4}$	m (deflection)	M
AD	$0<x<0.5$	4×10^{6}	0	$8 x$
DB	$0.5<x<1$	4×10^{6}	0	$8 x-2.5(x-0.5)^{2}$
BC	$1<x<3$	8×10^{6}	$x-1$	$8 x-2.5(x-0.5)^{2}$

Deflection, Δ_{B}

$$
\begin{aligned}
\Delta_{B} & =\int \frac{m M}{E I} d x \\
& =\int_{1}^{3} \frac{(x-1)\left(-2.5 x^{2}+10.5 x-0.625\right)}{\left(200 \times 10^{6}\right)\left(8 \times 10^{-6}\right)} d x \\
& =\frac{1}{1600}\left[-\frac{2.5 x^{4}}{4}+\frac{13 x^{3}}{3}-\frac{11.125 x^{2}}{2}+0.625 x\right]_{1}^{3} \\
& =0.012 \mathrm{~m} \\
& =12 \mathrm{~mm}
\end{aligned}
$$

Moment equation (slope):

Segment	Condition	$I \mathrm{~mm}^{4}$	m (slope)	M
AD	$0<x<0.5$	4×10^{6}	0	8 x
DB	$0.5<\mathrm{x}<1$	4×10^{6}	0	$8 x-2.5(x-0.5)^{2}$
BC	$1<\mathrm{x}<3$	8×10^{6}	-1	$8 x-2.5(x-0.5)^{2}$

Slope, θ_{B}

$$
\begin{aligned}
\theta_{B} & =\int \frac{m M}{E I} d x \\
& =\int_{1}^{3} \frac{(1)\left(-2.5 x^{2}+10.5 x-0.625\right)}{\left(200 \times 10^{6}\right)\left(8 \times 10^{-6}\right)} d x \\
& =\frac{1}{1600}\left[-\frac{2.5 x^{3}}{3}+\frac{10.5 x^{2}}{2}-0.625 x\right]_{1}^{3} \\
& =\frac{19.1}{1600} \\
& =0.0119 \mathrm{rad}
\end{aligned}
$$

THANKS

by Saffuan Wan Ahmad

Author Information

Mohd Arif Bin Sulaiman
Mohd Faizal Bin Md. Jaafar
Mohammad Amirulkhairi Bin Zubir
Rokiah Binti Othman
Norhaiza Binti Ghazali
Shariza Binti Mat Aris

