
Problem Solving

LOCAL, GLOBAL & PARAMETERS

by

Noor Azida Binti Sahabudin
Faculty of Computer Systems & Software Engineering

azida@ump.edu.my

OER Problem Solving by Noor Azida Binti Sahabudin work is under licensed

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Chapter Description

• Aims
– A

• Expected Outcomes
– Explain the difference between local and global variables

– Explain the use of parameters

• References
– Sprankle, M., and Hubbard, J., (2012). Problem Solving and

Programming Concepts : 9th Edition. Prentice Hall, 2012. ISBN :

0132492644

Local and Global Variable

• Local Variable
– Variable that defined within a module
– Unknown to other module and to the main program
– Used only by the module itself
– Allows cohesion to take place
– Programmer does not have to worry about variable

name duplication in modules created by other
programmers

– If other modules need to use the value of a variable,
the modules must be coupled through the use of
parameters or return value

Local and Global Variable

• Global variable

– Variable that are defined outside of the
individual’s modules

– Global to the program visible to all modules

– Allow data coupling

– Use for:

• Variable that will be used in all modules

Local and Global Variable

Variables: A, B, C

CONTROL MODULE

Variables: X, Y, Z

MODULE1

Variables: D, E, F

MODULE2

Variables: G, H, I

MODULE3

Variables: X, J, K

Global to all modules

Local to CONTROL MODULE

Local to MODULE1

Local to MODULE2

Local to MODULE3

Parameters

• Local variables that are passed or sent from
one module to another

• Another way of facilitating coupling that
allows the communication of data between
modules

• E.g.:

– READ (A, B, C)

PARAMETER

Parameters

• Terminology

– The formal vs. actual parameter

– The calling module vs. the called module

– Call-by-value vs. call-by-reference

Parameters

CONTROL PAY

PROCESS READ (*HOURS, * PAYRATE)

PROCESS CALC (HOURS, PAYRATE, *PAY)

PROCESS PRINT (PAY)

END

READ(*HRS, *RATE)

ENTER HRS, RATE

PRINT HRS, RATE

EXIT

CALC(HRS, RATE, *PAY)

PAY = HRS * RATE

EXIT

PRINT (PAY)

PRINT PAY

EXIT

Calling module

Actual parameter listings

Formal parameter listings

Called modules

* Indicates call-by-reference

parameter, those parameters

without an asterisk are

call-by-value parameter

Parameters

• Calling module

– Module that processes another module

• Called module

– Module that being processed

Parameters

CONTROL PAY

PROCESS READ (*HOURS, * PAYRATE)

PROCESS CALC (HOURS, PAYRATE, *PAY)

PROCESS PRINT (PAY)

END

READ(*HRS, *RATE)

ENTER HRS, RATE

PRINT HRS, RATE

EXIT

CALC(HRS, RATE, *PAY)

PAY = HRS * RATE

EXIT

PRINT (PAY)

PRINT PAY

EXIT

Calling module

Called modules

Parameters

• Actual parameter listing

– The list of parameters that follow the module
name being processed in calling module

• Formal parameter listing

– The list of parameters that follow the module
name at the beginning of the module

Parameters

CONTROL PAY

PROCESS READ (*HOURS, * PAYRATE)

PROCESS CALC (HOURS, PAYRATE, *PAY)

PROCESS PRINT (PAY)

END

READ(*HRS, *RATE)

ENTER HRS, RATE

PRINT HRS, RATE

EXIT

CALC(HRS, RATE, *PAY)

PAY = HRS * RATE

EXIT

PRINT (PAY)

PRINT PAY

EXIT

Calling module

Actual parameter listings

Formal parameter listings

Called modules

Return values

• Return values

– The value is sent out of the called module into the
calling module

– The result of the function

– E.g.:

• return (variable_name)

Sending data between modules

• 2 ways to send data from one module to
another module

– Send value

– Send address of variable

Sending data between modules

• Call-by-value parameter
– Send the value of the variable

– the value of the variable is sent to the called module
by the calling module.

– called module will then make a new memory location
for this variable (since it has no knowledge of where
the variable is stored by the calling module)

– when the called module makes a change in the
variables, the changes will not affected the variable in
the calling module because the parameter has a
different memory location

Parameters

CONTROL PAY

PROCESS READ (*HOURS, * PAYRATE)

PROCESS CALC (HOURS, PAYRATE, *PAY)

PROCESS PRINT (PAY)

END

READ(*HRS, *RATE)

ENTER HRS, RATE

PRINT HRS, RATE

EXIT

CALC(HRS, RATE, *PAY)

PAY = HRS * RATE

EXIT

PRINT (PAY)

PRINT PAY

EXIT

Calling module

Called modules

Sending data between modules

• Call-by-reference parameter

– Send the address of the variable

– Specified by the use of an asterisk (*) in front of
the variable name in both actual and the formal
parameter listings

– the memory location is sent, not the value

– When the called module changes the value of the
parameter, the calling module will see the change
because they are using the same memory location

Call by-Value and Call by-Reference
CONTROL PAY

1. PROCESS READ (*HOURS, * PAYRATE)

1 1

Address of 2000 is sent Address of 2002 is sent

Address of 2000 is received Address of 2002 is received

Value of HRS is found in 2000 Value of RATE is found in 2002

READ (* HRS *RATE)

1. ENTER HRS, RATE

2. PRINT HRS, RATE

3. EXIT

CONTROL PAY Addresses

352000

HOURS

122002

PAYRATE

4202004

PAY
1 Call-by reference

2. PROCESS CALC (HOURS, PAYRATE, *PAY)

2 1

Value of 35 is sent

Value of 35 is

received and placed

in a new address

2

352000

354000

122002

Value of 12 is sent

Value of 12 is

received and placed

in a new address

124002

Address of 2004 is

sent

2004

Address of 2004 is

received

Value PAY is found

in 2004

CALC (HRS, RATE, *PAY)

1. PAY = HRS * RATE

2. EXIT

CALC Addresses

354000

HRS

124002

RATE

Call-by value2

3. PROCESS PRINT (PAY)

4. END

2

Value of 420 is sent

Value of 420 is

received and placed

in a new address

4202004

4206000

PRINT (PAY)

1. PRINT PAY

2. EXIT

PRINT Addresses

4206000

PAY

Conclusion / What we have learn today?

Daily life problem

6 problem solving steps

Types of problems (algorithmic vs heuristic)

Problem solving with computer

Difficulties with problem solving

Author Information

NOOR AZIDA BINTI SAHABUDIN

Senior Lecturer

Faculty of Computer Systems & Software Engineering

Universiti Malaysia Pahang

PhD in Educational Technology

http://fskkp.ump.edu.my/index.php/en/
http://www.ump.edu.my/en

