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Chapter 2 : Part 1 – Macaulay 
Method

• Aims
– Draw elastic curve for beam
– Write equation for bending moment 
– Determine the deflection of statically determinate beam by using Double Integration Method.
– Write a single equation for bending moment.  
– Determine the deflection of statically determinate beam by using Macaulay’s Method.

• Expected Outcomes :
– Able to analyze determinate beam – deflection and slope by Macaulay Method.

• References
– Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall 
– Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
– Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
– Structural Analysis, Coates, Coatie and Kong 
– Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. 

Nelson, Jr., 4th Edition, John Wiley
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WHAT IS DEFLECTION????
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• deflection is a term that is used to describe the degree to which a structural 
element is displaced under a load. 

INTRODUCTION
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SOURCES

LOAD TEMPERATURE FABRICATION
ERROR SETTLEMENT
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THE ELASTIC CURVE
-The deflection diagram of the longitudinal axis 
that passes through the centrfold of each 
cross-sectional area of the beam

- Support that resist a force, such as pinned, 
restrict displacement

- Support that resist a moment such as fixed, 
resist rotation or slope as well as 
displacement.
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Three basic methods to find deflection for statically 
determinate beams:

Mac-Caulay’s
Method

Unit Load
Method

Moment Area
MethodDouble Integration

Method

Method

Cut for each sections

No. of coefficient (C1, C2, C3, …) 
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EULER-BERNOULLI THEORY

• Also known as elastic-beam theory
• This theory form important differential 

equation that relate the internal moment in a 
beam to the displacement and slope of its 
elastic curve.

• This equation form the basis for the deflection 
methods. 

=                         Equation 1
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• Moment, M is known expressible as a function 
of position x, the successive integrations of Eq. 
1 will yield the beam’s slope, θ.

휃 =
푑푣
푑푥

=
푀
퐸퐼
푑푥 

• And the equation of the elastic curve, 
v(displacement)

푣 = 푓(푥) =
푀
퐸퐼
푑푥
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• This method depend on the loading of the 
beam.

• All function for moment  must be written each 
valid within the region between 
discontinuities.

• Using equation 1 and the function for M, will 
give the slope and deflection for each region 
of the beam for which they are valid.
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• EXAMPLE

Consider a simply supported beam AB of length L and carrying concentrated 
load P at mid span,C as shown below. Use the double integration method. 
Find the equation of the elastic curve. EI is constant.



by Saffuan Wan Ahmad

• Function for the beam moment
• For span 0<x1<L/2

M =
P
2
푥

• For span L/2<x2<L

 M =
P
2
푥 − P(푥 −

L
2

)

 M = −
P
2
푥 +

PL
2
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• Replace M1 into slope and displacement integration.

푑 푣
푑푥

=
P
2 푥
퐸퐼

휃 퐸퐼 =
푑푣
푑푥

=
P
2
푥 푑푥

푣 퐸퐼 = 푓(푥) =
P
2
푥 푑푥
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휃 퐸퐼 =
P
2
푥  푑푥

휃 퐸퐼 =
P푥

4
+ C

Then,              푣 퐸퐼 = ∫ + C  푑푥

 푣 퐸퐼 =
P푥
12

+ C 푥 + C

• Here we have 2 unknown C1 and C2
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• Replace M2 into slope and displacement integration.

푑 푣
푑푥

=
−P

2 푥 + PL
2

퐸퐼

휃 퐸퐼 =
푑푣
푑푥

= −
P
2
푥 +

PL
2
푑푥

푣 퐸퐼 = 푓(푥) = −
P
2
푥 +

PL
2
푑푥
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휃 퐸퐼 = −
P
2
푥 +

PL
2
푑푥

휃 퐸퐼 = −
P
4
푥 +

PL
2
푥 + C

Then,

푣 퐸퐼 = −
P
4
푥 +

PL
2
푥 + C 푑푥

푣 퐸퐼 = −
P

12
푥 +

PL
4
푥 + C 푥 + C

• Here we have 2 unknown C3and C4
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• Using boundary conditions 
– 푣 = 0, 푥 = 0
– 푣 = 0, 푥 = L

– 푥 = 푥 =
• 푣 = 푣
• 휃 = 휃

• This will solve C1, C2, C3 and C4
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Solving all the unknown, Cx, will give slope and 
displacement for the element.

– At the support  푥 = 0, 푥 = L

휃 = 휃 = ±
푃퐿
16

– At the mid span 푥 = 푥 =

 푣 = 푣 = −
푃퐿
48
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GENERAL

Mac-Caulay’s method is a means to find the equation that 
describes the deflected shape of a beam

 From this equation, any deflection of interest can be found
Mac-Caulay’s method enables us to write a single equation for 

bending moment for the full length of the beam
When coupled with the Euler-Bernoulli theory, we can then 

integrate the expression for bending moment to find the 
equation for deflection using the double integration method.

Macauly’s Method allow us to ‘turn off’ partial of moment 
function when the value inside a bracket in that function is 
zero or negative. 
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Macaulay’s Method

In this method, the moment function only will be considered at end of the 
section

P
M

a
x

M
a

x

M
a

x

Mo

1)( axP 

2
)( 2axw 

0
0 )( axM 
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Macauly’s Method
Let us again consider a simply supported beam AB of length L and carrying 
concentrated load P at mid span,C as shown below. EI is constant. This 
example are going to show how to find the equation of elastic curve for the 
beam by ‘turn off’ part of a function using Macauly’s Method.
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• Again we must write a function for the beam moment 
that can describe the moment for the beam wholly 
from the left side. 

• This beam have 2 span. Macauly’s Method will use the 
moment function to the very right with only x function 
as distance. Where here for example:

• Span L/2<x<L

M =
P
2
푥 − P 푥 −

L
2

• Take note here Macauly’s Method use a different 
bracket that have a special function that have an 
advanced understanding and application.
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• Span L/2<x<L

M =
P
2
푥 − P 푥 −

L
2

• The bracket above allow the function of ‘turn off’ 
when inside value is negative or zero.

• Means if we have 푥 ≤ the   푥 − will be zero

• Mathematically explained as :

푥 −
L
2

=
    0     , 푥 ≤

L
2

 푥 −
L
2

, 푥 >
L
2
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• Applying Euler-Bernoulli Theory replace M into slope and 
displacement integration.

퐸퐼
푑 푣
푑푥

=
P
2
푥 − P 푥 −

L
2

휃퐸퐼 =
푑푣
푑푥

=
P
2
푥 − P 푥 −

L
2
푑푥

푣퐸퐼 = 푓(푥) =
P
2
푥 − P 푥 −

L
2
푑푥
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• From the slope integration :

휃퐸퐼 =
P
2
푥 − P 푥 −

L
2
푑푥

휃퐸퐼 =
P

4
푥 −

P

2
푥 −

L

2
+ C

• Take note here that 푥 − is integrate as a 

function of x. This is rooted to advanced math 
that Macaulay use in his method that need to 
be remember.
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• From the displacement integration :

푣퐸퐼 =
P

2
푥 − P 푥 −

L

2
푑푥

푣퐸퐼 =
P

4
푥 −

P

2
푥 −

L

2
+ C 푑푥

푣퐸퐼 =
P

12
푥 −

P

6
푥 −

L

2
+ C 푥 + C

• Again Ttke note here that 푥 − is integrate 
as a function of x. 
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• From slope and displacement integration procedure, 2 
unknown were obtained and solved using the 
boundary condition:
– 푣 = 0, 푥 = 0
– 푣 = 0, 푥 = L

• Please remember :

푥 −
L
2

=
    0     , 푥 ≤

L
2

 푥 −
L
2

, 푥 >
L
2
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• Lets use the first boundary
– 푣 = 0, 푥 = 0

0퐸퐼 =
P

12
0 −

P

6
0 −

L

2
+ C 0 + C

• Inside the bracket 푥 − = − = 0

0퐸퐼 =
P

12
0 − 0 + C 0 + C

C = 0
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• The second boundary 
– 푣 = 0, 푥 = L and C = 0

0퐸퐼 =
P

12
L −

P

6
L −

L

2
+ C L

• Inside the bracket L − = we use the 

value  

C = −
3PL

48
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• Using unknown:

– C = − and C = 0

휃퐸퐼 =
P

4
푥 −

P

2
푥 −

L

2
−

3PL
48

푣퐸퐼 =
P

12
푥 −

P

6
푥 −

L

2
−

3PL
48

푥

• This equation can be use to obtain deflection 
and displacement at any position of the beam 
following ‘turn off’ rule.



by Saffuan Wan Ahmad

• Lets determine slope at the support :
– At 푥 = 0

휃퐸퐼 =
P

4
0 −

P

2
0 −

L

2
−

3PL
48

• Inside the bracket 푥 − = − = 0

휃퐸퐼 = −
3PL

48

휃 = −
PL
16퐸퐼
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• Lets determine slope at the support :
– At 푥 = L

휃퐸퐼 =
P

4
L −

P

2
L −

L

2
−

3PL
48

• Inside the bracket 푥 − =

휃퐸퐼 =
3PL

48

휃 = +
PL
16퐸퐼
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• Lets determine maximum displacement at the midspan :
– At 푥 =

푣퐸퐼 =
P

12
L
2

−
P
6

L
2
−

L
2

−
3PL

48
L
2

• Inside the bracket 푥 − = 0

푣퐸퐼 = −
PL
48

푣 = −
PL

48퐸퐼
– Negative means downward
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Macauly’s Method
In this example we take a beam with the UDL of 20 kN/m 
applied to the centre of the beam as shown. The beam has the 
materials property, E = 30 kN/mm2 and a cross section in mm as 
shown. Determine the maximum displacement in the beam
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• Taking moments about the cut, we have:
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• Again the Macaulay brackets (take note here 
= )have been used to indicate when 

terms should become zero. Hence:

• Applying Euler-Bernoulli (v = y): 
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• Integrate Equation 1 to get the slope 
equation:

• Integrate Equation 2 to get the displacement 
equation
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• The boundary conditions are: 
– Support A: y =0  at x = 0 
– Support B: y =0  at x = 8

• So for the first boundary condition:
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• For the second boundary condition:

• Insert constants into Equations 3 
(displacement) 
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• This is therefore a downward deflection  as 
expected.
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